Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 177, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792683

ABSTRACT

Intramembrane proteases play a pivotal role in biology and medicine, but how these proteases decode cleavability of a substrate transmembrane (TM) domain remains unclear. Here, we study the role of conformational flexibility of a TM domain, as determined by deuterium/hydrogen exchange, on substrate cleavability by γ-secretase in vitro and in cellulo. By comparing hybrid TMDs based on the natural amyloid precursor protein TM domain and an artificial poly-Leu non-substrate, we find that substrate cleavage requires conformational flexibility within the N-terminal half of the TMD helix (TM-N). Robust cleavability also requires the C-terminal TM sequence (TM-C) containing substrate cleavage sites. Since flexibility of TM-C does not correlate with cleavage efficiency, the role of the TM-C may be defined mainly by its ability to form a cleavage-competent state near the active site, together with parts of presenilin, the enzymatic component of γ-secretase. In sum, cleavability of a γ-secretase substrate appears to depend on cooperating TM domain segments, which deepens our mechanistic understanding of intramembrane proteolysis.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Proteolysis , Protein Domains , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Catalytic Domain
2.
Cell Rep ; 26(11): 3087-3099.e11, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865896

ABSTRACT

Unspliced XBP1 mRNA encodes XBP1u, the transcriptionally inert variant of the unfolded protein response (UPR) transcription factor XBP1s. XBP1u targets its mRNA-ribosome-nascent-chain-complex to the endoplasmic reticulum (ER) to facilitate UPR activation and prevents overactivation. Yet, its membrane association is controversial. Here, we use cell-free translocation and cellular assays to define a moderately hydrophobic stretch in XBP1u that is sufficient to mediate insertion into the ER membrane. Mutagenesis of this transmembrane (TM) region reveals residues that facilitate XBP1u turnover by an ER-associated degradation route that is dependent on signal peptide peptidase (SPP). Furthermore, the impact of these mutations on TM helix dynamics was assessed by residue-specific amide exchange kinetics, evaluated by a semi-automated algorithm. Based on our results, we suggest that SPP-catalyzed intramembrane proteolysis of TM helices is not only determined by their conformational flexibility, but also by side-chain interactions near the scissile peptide bond with the enzyme's active site.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Intracellular Membranes/metabolism , Proteolysis , X-Box Binding Protein 1/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Heme Oxygenase-1/metabolism , Humans , Mutation , Protein Domains , SEC Translocation Channels/metabolism , X-Box Binding Protein 1/chemistry , X-Box Binding Protein 1/genetics
3.
Anal Bioanal Chem ; 411(4): 915-924, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30580388

ABSTRACT

Diacyl glycerophospholipids (GPs) belong to the most abundant lipid species in living organisms and consist of a glycerol backbone with fatty acyl groups in sn-1 and sn-2 and a polar head group in the sn-3 position. Regioisomeric mixed diacyl GPs have the same fatty acyl composition but differ in their allocation to sn-1 or sn-2 of the glycerol unit. In-depth analysis of regioisomeric mixed diacyl GP species composed of fatty acyl moieties that are similar in length and degree of saturation typically requires either chemical derivatization or sophisticated analytical instrumentation, since these types of regioisomers are not well resolved under standard ultra-performance liquid chromatography (UPLC) conditions. Here, we introduce a simple and fast method for diacyl GP regioisomer analysis employing UPLC tandem mass spectrometry (MS/MS). This GP regioisomer analysis is based both on minor chromatographic retention time shifts and on major differences in relative abundances of the two fatty acyl anion fragments observed in MS/MS. To monitor these differences with optimal precision, MS/MS spectra are recorded continuously over the UPLC elution profile of the lipid species of interest. Quantification of relative abundances of the regioisomers was performed by algorithms that we have developed for this purpose. The method was applied to commercially available mixed diacyl GP standards and to total lipid extracts of Escherichia coli (E. coli) and bovine liver. To validate our results, we determined regioisomeric ratios of phosphatidylcholine (PC) standards using phospholipase A2-specific release of fatty acids from the sn-2 position of the glycerol backbone. Our results show that most analyzed mixed diacyl GPs of biological origin exhibit significantly higher regioisomeric purity than synthetic lipid standards. In summary, this method can be implemented in routine LC-MS/MS-based lipidomics workflows without the necessity for additional chemical additives, derivatizations, or instrumentation.


Subject(s)
Chromatography, Liquid/methods , Glycerophospholipids/analysis , Glycerophospholipids/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Animals , Cattle , Escherichia coli/chemistry , Glycerophospholipids/standards , Liver/chemistry , Reference Standards , Stereoisomerism
4.
Anal Bioanal Chem ; 400(8): 2427-38, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21461863

ABSTRACT

Recombinant human follicle stimulating hormone is an important drug in reproductive medicine. Thorough analysis of the heterodimeric heavily glycosylated protein is a prerequisite for the evaluation of production batches as well as for the determination of "essential similarity" of new biosimilars. The concerted application of different liquid chromatography-mass spectrometry methods enabled the complete depiction of the primary structure of this pituitary hormone. Sequence coverage of 100% for the α- as well as the ß-chain was achieved with tryptic peptides. Most of these peptides could be verified by tandem mass spectrometry. Site-specific analysis of all four glycosylation sites was, however, not possible with tryptic but with chymotryptic peptides. Quantification of the glycoforms of each glycopeptide was accomplished with the software MassMap®. Both protein subunits gave interpretable mass spectra upon S-alkylation and separation on a C5 reversed-phase column. Glycan isomer patterns were depicted by separation on porous graphitic carbon, using mass spectrometric detection for the evaluation of the glycopeptide liquid chromatography-electrospray ionization data. The currently marketed product Gonal-f™ and a potential biosimilar were compared with the help of these procedures.


Subject(s)
Follicle Stimulating Hormone/analysis , Chromatography, Liquid , Humans , Recombinant Proteins/analysis , Spectrometry, Mass, Electrospray Ionization
5.
Biophys Chem ; 96(2-3): 305-18, 2002 May 02.
Article in English | MEDLINE | ID: mdl-12034449

ABSTRACT

The N-terminal, extracellular domain of the receptor for glucagon-like peptide 1 (GLP-1 receptor) was expressed at a high level in E. coli and isolated as inclusion bodies. Renaturation with concomitant disulfide bond formation was achieved from guanidinium-solubilized material. A soluble and active fraction of the protein was isolated by ion exchange chromatography and gel filtration. Complex formation with GLP-1 was shown by cross-linking experiments, surface plasmon resonance measurements, and isothermal titration calorimetry. The existence of disulfide bridges in the N-terminal receptor fragment was proven after digestion of the protein with pepsin. Further analysis revealed a disulfide-binding pattern with links between cysteines 46 and 71, 62 and 104, and between 85 and 126.


Subject(s)
Disulfides/chemistry , Protein Folding , Receptors, Glucagon/chemistry , Amino Acid Sequence , Calorimetry , Circular Dichroism , Escherichia coli/genetics , Escherichia coli/metabolism , Glucagon/metabolism , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Humans , Molecular Sequence Data , Peptide Fragments/metabolism , Protein Binding , Protein Precursors/metabolism , Protein Structure, Tertiary , Receptors, Glucagon/isolation & purification , Receptors, Glucagon/metabolism , Titrimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...