Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 6(4): 613-628, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32078764

ABSTRACT

Most phenotypic screens aiming to discover new antimalarial chemotypes begin with low cost, high-throughput tests against the asexual blood stage (ABS) of the malaria parasite life cycle. Compounds active against the ABS are then sequentially tested in more difficult assays that predict whether a compound has other beneficial attributes. Although applying this strategy to new chemical libraries may yield new leads, repeated iterations may lead to diminishing returns and the rediscovery of chemotypes hitting well-known targets. Here, we adopted a different strategy to find starting points, testing ∼70,000 open source small molecules from the Global Health Chemical Diversity Library for activity against the liver stage, mature sexual stage, and asexual blood stage malaria parasites in parallel. In addition, instead of using an asexual assay that measures accumulated parasite DNA in the presence of compound (SYBR green), a real time luciferase-dependent parasite viability assay was used that distinguishes slow-acting (delayed death) from fast-acting compounds. Among 382 scaffolds with the activity confirmed by dose response (<10 µM), we discovered 68 novel delayed-death, 84 liver stage, and 68 stage V gametocyte inhibitors as well. Although 89% of the evaluated compounds had activity in only a single life cycle stage, we discovered six potent (half-maximal inhibitory concentration of <1 µM) multistage scaffolds, including a novel cytochrome bc1 chemotype. Our data further show the luciferase-based assays have higher sensitivity. Chemoinformatic analysis of positive and negative compounds identified scaffold families with a strong enrichment for activity against specific or multiple stages.


Subject(s)
Antimalarials/isolation & purification , Drug Discovery , Life Cycle Stages/drug effects , Plasmodium falciparum/drug effects , Small Molecule Libraries/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Cheminformatics/methods , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Plasmodium falciparum/genetics , Small Molecule Libraries/chemistry
2.
Blood ; 129(12): 1669-1679, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28096086

ABSTRACT

Clinical studies indicate that thrombocytopenia correlates with the development of severe falciparum malaria, suggesting that platelets either contribute to control of parasite replication, possibly as innate parasite killer cells or function in eliciting pathogenesis. Removal of platelets by anti-CD41 mAb treatment, platelet inhibition by aspirin, and adoptive transfer of wild-type (WT) platelets to CD40-KO mice, which do not control parasite replication, resulted in similar parasitemia compared with control mice. Human platelets at a physiologic ratio of 1 platelet to 9 red blood cells (RBCs) did not inhibit the in vitro development or replication of blood-stage Plasmodium falciparum The percentage of Plasmodium-infected (iRBCs) with bound platelets during the ascending parasitemia in Plasmodium chabaudi- and Plasmodium berghei-infected mice and the 48-hour in vitro cycle of P falciparum was <10%. P chabaudi and P berghei iRBCs with apoptotic parasites (TdT+) exhibited minimal platelet binding (<5%), which was similar to nonapoptotic iRBCs. These findings collectively indicate platelets do not kill bloodstage Plasmodium at physiologically relevant effector-to-target ratios. P chabaudi primary and secondary parasitemia was similar in mice depleted of platelets by mAb-injection just before infection, indicating that activation of the protective immune response does not require platelets. In contrast to the lack of an effect on parasite replication, adoptive transfer of WT platelets to CD40-KO mice, which are resistant to experimental cerebral malaria, partially restored experimental cerebral malaria mortality and symptoms in CD40-KO recipients, indicating platelets elicit pathogenesis and platelet CD40 is a key molecule.


Subject(s)
Blood Platelets/physiology , Malaria/immunology , Animals , Blood Platelets/parasitology , CD40 Antigens , Cells, Cultured , Erythrocytes/parasitology , Humans , Immunity, Cellular , Malaria/blood , Malaria, Cerebral/etiology , Mice , Plasmodium chabaudi
3.
ACS Infect Dis ; 2(11): 816-826, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27933786

ABSTRACT

MMV007564 is a novel antimalarial benzimidazolyl piperidine chemotype identified in cellular screens. To identify the genetic determinant of MMV007564 resistance, parasites were cultured in the presence of the compound to generate resistant lines. Whole genome sequencing revealed distinct mutations in the gene named Plasmodium falciparum cyclic amine resistance locus (pfcarl), encoding a conserved protein of unknown function. Mutations in pfcarl are strongly associated with resistance to a structurally unrelated class of compounds, the imidazolopiperazines, including KAF156, currently in clinical trials. Our data demonstrate that pfcarl mutations confer resistance to two distinct compound classes, benzimidazolyl piperidines and imidazolopiperazines. However, MMV007564 and the imidazolopiperazines, KAF156 and GNF179, have different timings of action in the asexual blood stage and different potencies against the liver and sexual blood stages. These data suggest that pfcarl is a multidrug-resistance gene rather than a common target for benzimidazolyl piperidines and imidazolopiperazines.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Antimalarials/chemistry , Humans , Life Cycle Stages , Malaria, Falciparum/drug therapy , Mutation , Piperidines/chemistry , Piperidines/pharmacology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism
4.
mBio ; 7(4)2016 07 05.
Article in English | MEDLINE | ID: mdl-27381290

ABSTRACT

UNLABELLED: Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites. IMPORTANCE: Several previous in vitro evolution studies have implicated the Plasmodium falciparum cyclic amine resistance locus (PfCARL) as a potential target of imidazolopiperazines, potent antimalarial compounds with broad activity against different parasite life cycle stages. Given that the imidazolopiperazines are currently being tested in clinical trials, understanding their mechanism of resistance and the cellular processes involved will allow more effective clinical usage.


Subject(s)
Antimalarials/pharmacology , Drug Resistance, Multiple , Genetic Loci , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Recombination, Genetic
5.
Nat Commun ; 7: 11901, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301419

ABSTRACT

Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.


Subject(s)
Drug Resistance , Parasites/physiology , Plasmodium falciparum/physiology , Animals , Antimalarials/pharmacology , Clone Cells , Drug Resistance/drug effects , INDEL Mutation/genetics , Mutation/genetics , Parasites/drug effects , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide/genetics
6.
Cell Host Microbe ; 19(1): 114-26, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26749441

ABSTRACT

Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity. SaLSSA analysis of 13,983 unique compounds uncovered that >90% of well-characterized antimalarials, including endoperoxides and 4-aminoquinolines, as well as compounds active against asexual blood stages, lost most of their killing activity when parasites developed into metabolically quiescent stage V gametocytes. On the other hand, we identified compounds with consistent low nanomolar transmission-blocking activity, some of which showed cross-reactivity against asexual blood and liver stages. The data clearly emphasize substantial physiological differences between sexual and asexual parasites and provide a tool and starting points for the discovery and development of transmission-blocking drugs.


Subject(s)
Antimalarials/pharmacology , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Malaria/parasitology , Plasmodium falciparum/drug effects , Humans , Malaria/transmission , Plasmodium falciparum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...