Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
Add more filters










Publication year range
1.
Mol Ecol ; : e17383, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747342

ABSTRACT

Despite a long presence in the contiguous United States (US), the distribution of invasive wild pigs (Sus scrofa × domesticus) has expanded rapidly since the 1980s, suggesting a more recent evolutionary shift towards greater invasiveness. Contemporary populations of wild pigs represent exoferal hybrid descendants of domestic pigs and European wild boar, with such hybridization expected to enrich genetic diversity and increase the adaptive potential of populations. Our objective was to characterize how genetic enrichment through hybridization increases the invasiveness of populations by identifying signals of selection and the ancestral origins of selected loci. Our study focused on invasive wild pigs within Great Smoky Mountains National Park, which represents a hybrid population descendent from the admixture of established populations of feral pigs and an introduction of European wild boar to North America. Accordingly, we genotyped 881 wild pigs with multiple high-density single-nucleotide polymorphism (SNP) arrays. We found 233 markers under putative selection spread over 79 regions across 16 out of 18 autosomes, which contained genes involved in traits affecting feralization. Among these, genes were found to be related to skull formation and neurogenesis, with two genes, TYRP1 and TYR, also encoding for crucial melanogenesis enzymes. The most common haplotypes associated with regions under selection for the Great Smoky Mountains population were also common among other populations throughout the region, indicating a key role of putatively selective variants in the fitness of invasive populations. Interestingly, many of these haplotypes were absent among European wild boar reference genotypes, indicating feralization through genetic adaptation.

2.
Chemistry ; 30(28): e202303872, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38477400

ABSTRACT

Owing to its high natural abundance compared to the commonly used transition (precious) metals, as well as its high Lewis acidity and ability to change oxidation state, aluminium has recently been explored as the basis for a range of single-site catalysts. This paper aims to establish the ground rules for the development of a new type of cationic alkene oligomerisation catalyst containing two Al(III) ions, with the potential to act co-operatively in stereoselective assembly. Five new dimers of the type [R2Al(2-py')]2 (R=Me, iBu; py'=substituted pyridyl group) with different substituents on the Al atoms and pyridyl rings have been synthesised. The formation of the undesired cis isomers can be suppressed by the presence of substituents on the 6-position of the pyridyl ring due to steric congestion, with DFT calculations showing that the selection of the trans isomer is thermodynamically controlled. Calculations show that demethylation of the dimers [Me2Al(2-py')]2 with Ph3C+ to the cations [{MeAl(2-py')}2(µ-Me)]+ is highly favourable and that the desired trans disposition of the 2-pyridyl ring units is influenced by steric effects. Preliminary experimental studies confirm that demethylation of [Me2Al(6-MeO-2-py)]2 can be achieved using [Ph3C][B(C6F5)4].

3.
PLoS Genet ; 20(3): e1010719, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457441

ABSTRACT

DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals. The relatively large numbers of individuals allowed us to identify additional genomic MHM regions on the Z chromosome that were significantly differentially methylated between the sexes. These regions appear to down-regulate local gene expression in males, but not remove it entirely (unlike the lncRNAs identified in the initial MHM regions). These MHM regions were further tested and the most balanced genes appear to show decreased expression in males, whilst methylation appeared to be far more correlated with gene expression in the less balanced, as compared to the most balanced genes. In addition, quantitative trait loci (QTL) that regulate variation in methylation on the Z chromosome, and those loci that regulate methylation on the autosomes that derive from the Z chromosome were mapped. Trans-effect hotspots were also identified that were based on the autosomes but affected the Z, and also one that was based on the Z chromosome but that affected both autosomal and sex chromosome DNA methylation regulation. We show that both cis and trans loci that originate from the Z chromosome never exhibit an interaction with sex, whereas trans loci originating from the autosomes but affecting the Z chromosome always display such an interaction. Our results highlight how additional MHM regions are actually present on the Z chromosome, and they appear to have smaller-scale effects on gene expression in males. Quantitative variation in methylation is also regulated both from the autosomes to the Z chromosome, and from the Z chromosome to the autosomes.


Subject(s)
Chickens , Sex Chromosomes , Animals , Male , Chickens/genetics , DNA Methylation/genetics , Dosage Compensation, Genetic , Genome , Mammals/genetics , Sex Chromosomes/genetics
4.
Brain Behav Evol ; 99(1): 13-24, 2024.
Article in English | MEDLINE | ID: mdl-38368854

ABSTRACT

INTRODUCTION: Domestication is the process of modifying animals for human benefit through selective breeding in captivity. One of the traits that often diverges is the size of the brain and its constituent regions; almost all domesticated species have relatively smaller brains and brain regions than their wild ancestors. Although the effects of domestication on the brain have been investigated across a range of both mammal and bird species, almost nothing is known about the neuroanatomical effects of domestication on the world's most common bird: the chicken (Gallus gallus). METHODS: We compared the quantitative neuroanatomy of the telencephalon of white leghorn chickens with red junglefowl, their wild counterpart, and several wild galliform species. We focused specifically on the telencephalon because telencephalic regions typically exhibit the biggest differences in size in domesticate-wild comparisons. RESULTS: Relative telencephalon size was larger in chickens than in junglefowl and ruffed grouse (Bonasa umbellus). The relative size of telencephalic regions did not differ between chickens and junglefowl, but did differ in comparison with ruffed grouse. Ruffed grouse had larger hyperpallia and smaller entopallial, nidopallial, and striatal volumes than chickens and junglefowl. Multivariate analyses that included an additional three wild grouse species corroborated these findings: chicken and junglefowl have relatively larger nidopallial and striatal volumes than grouse. Conversely, the mesopallial and hyperpallial volumes tended to be relatively smaller in chickens and junglefowl. CONCLUSION: From this suite of comparisons, we conclude that chickens do not follow a pattern of widespread decreases in telencephalic region sizes that is often viewed as typical of domestication. Instead, chickens have undergone a mosaic of changes with some regions increasing and others decreasing in size, and there are few differences between chickens and junglefowl.


Subject(s)
Chickens , Galliformes , Telencephalon , Animals , Telencephalon/anatomy & histology , Chickens/anatomy & histology , Galliformes/anatomy & histology , Species Specificity , Male , Female , Organ Size , Animals, Wild/anatomy & histology , Domestication
5.
ACS Appl Energy Mater ; 7(2): 414-426, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38273966

ABSTRACT

Redox flow batteries (RFBs) rely on the development of cheap, highly soluble, and high-energy-density electrolytes. Several candidate quinones have already been investigated in the literature as two-electron anolytes or catholytes, benefiting from fast kinetics, high tunability, and low cost. Here, an investigation of nitrogen-rich fused heteroaromatic quinones was carried out to explore avenues for electrolyte development. These quinones were synthesized and screened by using electrochemical techniques. The most promising candidate, 4,8-dioxo-4,8-dihydrobenzo[1,2-d:4,5-d']bis([1,2,3]triazole)-1,5-diide (-0.68 V(SHE)), was tested in both an asymmetric and symmetric full-cell setup resulting in capacity fade rates of 0.35% per cycle and 0.0124% per cycle, respectively. In situ ultraviolet-visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopies were used to investigate the electrochemical stability of the charged species during operation. UV-Vis spectroscopy, supported by density functional theory (DFT) modeling, reaffirmed that the two-step charging mechanism observed during battery operation consisted of two, single-electron transfers. The radical concentration during battery operation and the degree of delocalization of the unpaired electron were quantified with NMR and EPR spectroscopy.

6.
Mol Ecol ; 33(4): e17247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38173194

ABSTRACT

Feathers comprise a series of evolutionary innovations but also harbour colour, a key biological trait known to co-vary with life history or complex traits. Those relationships are particularly true in melanin-based pigmentation species due to known pleiotropic effects of the melanocortin pathway - originating from melanin-associated phenotypes. Here, we explore the molecular basis of melanin colouration and expected co-variation at the molecular level in the melanin-based, colour polymorphic system of the tawny owl (Strix aluco). An extensive body of literature has revealed that grey and brown tawny owl colour morphs differ in a series of life history and behavioural traits. Thus, it is plausible to expect co-variation also at molecular level between colour morphs. To investigate this possibility, we assembled the first draft genome of the species against which we mapped ddRADseq reads from 220 grey and 150 brown morphs - representing 10 years of pedigree data from a population in Southern Finland - and explored genome-wide associations with colour phenotype. Our results revealed putative molecular signatures of cold adaptation strongly associated with the grey phenotype, namely, a non-synonymous substitution in MCHR1, plus 2 substitutions in non-coding regions of FTCD and FAM135A whose genotype combinations obtained a predictive power of up to 100% (predicting grey colour). These suggest a molecular basis of cold environment adaptations predicted to be grey-morph specific. Our results potentially reveal part of the molecular machinery of melanin-associated phenotypes and provide novel insights towards understanding the functional genomics of colour polymorphism in melanin-based pigmented species.


Subject(s)
Melanins , Strigiformes , Animals , Melanins/genetics , Strigiformes/genetics , Color , Pigmentation/genetics , Phenotype , Genomics
7.
Dalton Trans ; 52(39): 14017-14026, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37740353

ABSTRACT

Heterometal-containing polyoxotitanates (POTs) are much-studied single-source precursors (SSPs) for doped TiO2. In this work the properties of a wide range of lanthanide-containing POTs are studied to assess their potential use as SSPs for Ln-Ti hybrid oxides. The novel cage compounds [{Ti2O(OEt)8}(EtOH·LnCl)]2 (Ln = Sm, Gd, Tb, Dy, Ho, Tm and Yb) are structurally characterised. The magnetic properties of the Ln = Dy and Ho compounds were characterised using SQUID magnetometry-in both cases, there is evidence of significant uniaxial magnetic anisotropy, but magnetic relaxation is fast and therefore no single-molecule magnetic properties are observed. Upon decomposition lanthanide-doped anatase (Ln = La) or titania/LnTi-oxide mixtures are obtained, which show efficient stabilisation of the catalytically active anatase phase up to high temperatures, making the materials of potential interest for applications in photocatalysis.

8.
Small ; 19(45): e2303359, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37415549

ABSTRACT

This work presents a new strategy to achieve highly stable electrochromic devices and bilayer film construction. A novel solution-processable electrochromic polymer P1-Boc with quinacridone as the conjugated backbone and t-Boc as N-substituted non-conjugated solubilizing groups is designed. Thermal annealing of P1-Boc film results in the cleavage of t-Boc groups and the formation of N─H⋯O═C hydrogen-bonding crosslinked network, which changes its intrinsic solubility characteristics into a solvent-resistant P1 film. This film retains the electrochemical behavior and spectroelectrochemistry properties of the original P1-Boc film. Intriguingly, the electrochromic device based on the P1 film exhibits an ultrafast switching time (0.56/0.80 s at 523 nm) and robust electrochromic stability (retaining 88.4% of the initial optical contrast after 100 000 cycles). The observed cycle lifetime is one of the highest reported for all-organic electrochromic devices. In addition, a black-transparent bilayer electrochromic film P1/P2 is developed in which the use of the solvent-resistant P1 film as the bottom layer avoids interface erosion of the solution-processable polymer in a multilayer stacking.

9.
Chem Sci ; 14(24): 6522-6530, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37350820

ABSTRACT

While supramolecular chemistry involving organic and metallo-organic host assemblies is a well-established and important field with applications in gas-storage, drug-delivery and the regio- and stereo-control of organic reactions, the use of main group elements in this setting (beyond the second row of the p-block) has been little explored. In this paper we show how periodic trends in the p-block can provide the means for systematic size and structural control in an important class of supramolecular porphyrin-based capsules. The formation of molecular and extended 2D capsule arrangements between the heavier Group 15 tris(3-pyridyl) linkers Sb(3-py)3 and Bi(3-py)3 and the metallo-porphyrins MTPP (M = Zn, Mg; TPP = tetraphenylporphyrin, 3-py = 3-pyridyl) is the first study involving heavier Group 15 pyridyl linkers. The increase in C-E bond length in the E(3-py)3 linkers moving down Group 15 (from E = P, to Sb, to Bi) can be used to alter the dimensions and structural preference of the capsules, as can oxidation of the Group 15 bridgehead atoms themselves. The subtle changes in the dimensions and Lewis acidity of the encapsulates have a dramatic effect on the rate and selectivity of the catalytic oxidative cleavage of organic diols and catalytic oxidation of α-hydroxyketones. By providing simple tools for modulating the chemical and steric properties of the capsules this work should have direct applications for the tuning of the activity and specificity of a range of catalytic systems based on main-group-based capsules of this type.

10.
RSC Adv ; 13(23): 15918-15925, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37250222

ABSTRACT

Optimisation of the annealing time for the fabrication of nitrogen-doped graphitic-spheres (NDGSs), formed from a nitrogen-functionalised aromatic precursor at 800 °C, to give high nitrogen doping has been performed. Thorough analysis of the NDGSs, approximately 3 µm in diameter, pinpointed an optimum annealing time of 6 to 12 hours to obtain highest nitrogen content at the surface of the spheres (reaching a stoichiometry of around C3N at the surface and C9N in the bulk), with the quantity of sp2 and sp3 surface nitrogen varying with annealing time. The results suggest that changes in the nitrogen dopant level occur through slow diffusion of the nitrogen throughout the NDGSs, along with reabsorption of nitrogen-based gases produced during annealing. A stable bulk nitrogen dopant level of 9% was revealed in the spheres. The NDGSs performed well as anodes in lithium-ion batteries, providing a capacity of up to 265 mA h g-1 at a charging rate of C/20, but did not perform well in sodium-ion batteries without the use of diglyme, consistent with the presence of graphitic regions, but with low internal porosity.

11.
ChemSusChem ; 16(13): e202300128, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-36970847

ABSTRACT

A series of triarylamines was synthesised and screened for their suitability as catholytes in redox flow batteries using cyclic voltammetry (CV). Tris(4-aminophenyl)amine was found to be the strongest candidate. Solubility and initial electrochemical performance were promising; however, polymerisation was observed during electrochemical cycling leading to rapid capacity fade prescribed to a loss of accessible active material and the limitation of ion transport processes within the cell. A mixed electrolyte system of H3 PO4 and HCl was found to inhibit polymerisation producing oligomers that consumed less active material reducing rates of degradation in the redox flow battery. Under these conditions Coulombic efficiency improved by over 4 %, the maximum number of cycles more than quadrupled and an additional theoretical capacity of 20 % was accessed. This paper is, to our knowledge, the first example of triarylamines as catholytes in all-aqueous redox flow batteries and emphasises the impact supporting electrolytes can have on electrochemical performance.


Subject(s)
Amines , Electric Power Supplies , Oxidation-Reduction , Polymerization , Solubility
12.
Inorg Chem ; 62(11): 4625-4636, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36883367

ABSTRACT

The substitution of heavier, more metallic atoms into classical organic ligand frameworks provides an important strategy for tuning ligand properties, such as ligand bite and donor character, and is the basis for the emerging area of main-group supramolecular chemistry. In this paper, we explore two new ligands [E(2-Me-8-qy)3] [E = Sb (1), Bi (2); qy = quinolyl], allowing a fundamental comparison of their coordination behavior with classical tris(2-pyridyl) ligands of the type [E'(2-py)3] (E = a range of bridgehead atoms and groups, py = pyridyl). A range of new coordination modes to Cu+, Ag+, and Au+ is seen for 1 and 2, in the absence of steric constraints at the bridgehead and with their more remote N-donor atoms. A particular feature is the adaptive nature of these new ligands, with the ability to adjust coordination mode in response to the hard-soft character of coordinated metal ions, influenced also by the character of the bridgehead atom (Sb or Bi). These features can be seen in a comparison between [Cu2{Sb(2-Me-8-qy)3}2](PF6)2 (1·CuPF6) and [Cu{Bi(2-Me-8-qy)3}](PF6) (2·CuPF6), the first containing a dimeric cation in which 1 adopts an unprecedented intramolecular N,N,Sb-coordination mode while in the second, 2 adopts an unusual N,N,(π-)C coordination mode. In contrast, the previously reported analogous ligands [E(6-Me-2-py)3] (E = Sb, Bi; 2-py = 2-pyridyl) show a tris-chelating mode in their complexes with CuPF6, which is typical for the extensive tris(2-pyridyl) family with a range of metals. The greater polarity of the Bi-C bond in 2 results in ligand transfer reactions with Au(I). Although this reactivity is not in itself unusual, the characterization of several products by single-crystal X-ray diffraction provides snapshots of the ligand transfer reaction involved, with one of the products (the bimetallic complex [(BiCl){ClAu2(2-Me-8-qy)3}] (8)) containing a Au2Bi core in which the shortest Au → Bi donor-acceptor bond to date is observed.

13.
Heredity (Edinb) ; 130(3): 154-162, 2023 03.
Article in English | MEDLINE | ID: mdl-36725960

ABSTRACT

Chickens are believed to have inhabited the Hawaiian island of Kauai since the first human migrations around 1200AD, but numbers have peaked since the tropical storms Iniki and Iwa in the 1980s and 1990s that destroyed almost all the chicken coops on the island and released large numbers of domestic chickens into the wild. Previous studies have shown these now feral chickens are an admixed population between Red Junglefowl (RJF) and domestic chickens. Here, using genetic haplotypic data, we estimate the time of the admixture event between the feral population on the island and the RJF to 1981 (1976-1995), coinciding with the timings of storm Iwa and Iniki. Analysis of genetic structure reveals a greater similarity between individuals inhabiting the northern and western part of the island to RJF than individuals from the eastern part of the island. These results point to the possibility of introgression events between feral chickens and the wild chickens in areas surrounding the Koke'e State Park and the Alaka'i plateau, posited as two of the major RJF reservoirs in the island. Furthermore, we have inferred haplotype blocks from pooled data to determine the most plausible source of the feral population. We identify a clear contribution from RJF and layer chickens of the White Leghorn (WL) breed. This work provides independent confirmation of the traditional hypothesis surrounding the origin of the feral populations and draws attention to the possibility of introgression of domestic alleles into the wild reservoir.


Subject(s)
Chickens , Hybridization, Genetic , Animals , Humans , Chickens/genetics , Hawaii , Islands , Breeding
14.
Mol Phylogenet Evol ; 181: 107722, 2023 04.
Article in English | MEDLINE | ID: mdl-36720422

ABSTRACT

Mito-nuclear insertions, or NUMTs, relate to genetic material of mitochondrial origin that have been transferred to the nuclear DNA molecule. The increasing amounts of genomic data currently being produced presents an opportunity to investigate this type of patterns in genome evolution of non-model organisms. Identifying NUMTs across a range of closely related taxa allows one to generalize patterns of insertion and maintenance in autosomes, which is ultimately relevant to the understanding of genome biology and evolution. Here we collected existing pairwise genome-mitogenome data of the order Strigiformes, a group that includes all the nocturnal bird predators. We identified NUMTs by applying percent similarity thresholds after blasting mitochondrial genomes against nuclear genome assemblies. We identified NUMTsin all genomes with numbers ranging from 4 in Bubo bubo to 24 in Ciccaba nigrolineata. Statistical analyses revealed NUMT size to negatively correlate with NUMT's sequence similarity to with original mtDNA region. Lastly, characterizing these nuclear insertions of mitochondrial origin in a comparative genomics framework produced variable phylogenetic patterns, suggesting in some cases that insertions might pre-date speciation events within Strigiformes.


Subject(s)
Genome, Mitochondrial , Mitochondria , Animals , Phylogeny , Mitochondria/genetics , DNA, Mitochondrial/genetics , Birds/genetics , Sequence Analysis, DNA , Cell Nucleus/genetics
15.
Front Neuroanat ; 16: 1048261, 2022.
Article in English | MEDLINE | ID: mdl-36506870

ABSTRACT

The allometric scaling of the brain size and neuron number across species has been extensively studied in recent years. With the exception of primates, parrots, and songbirds, larger brains have more neurons but relatively lower neuronal densities than smaller brains. Conversely, when considering within-population variability, it has been shown that mice with larger brains do not necessarily have more neurons but rather more neurons in the brain reflect higher neuronal density. To what extent this intraspecific allometric scaling pattern of the brain applies to individuals from other species remains to be explored. Here, we investigate the allometric relationships among the sizes of the body, brain, telencephalon, cerebellum, and optic tectum, and the numbers of neurons and non-neuronal cells of the telencephalon, cerebellum, and optic tectum across 66 individuals originated from an intercross between wild and domestic chickens. Our intercross of chickens generates a population with high variation in brain size, making it an excellent model to determine the allometric scaling of the brain within population. Our results show that larger chickens have larger brains with moderately more neurons and non-neuronal cells. Yet, absolute number of neurons and non-neuronal cells correlated strongly and positively with the density of neurons and non-neuronal cells, respectively. As previously shown in mice, this scaling pattern is in stark contrast with what has been found across different species. Our findings suggest that neuronal scaling rules across species are not a simple extension of the neuronal scaling rules that apply within a species, with important implications for the evolutionary developmental origins of brain diversity.

16.
Inorg Chem ; 61(48): 19203-19219, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36384021

ABSTRACT

Single-source precursors are ubiquitous in a number of areas of chemistry and material science due to their ease of use and wide range of potential applications. The development of new single-source precursors is essential in providing entries to new areas of chemistry. In this work, we synthesize nine new structurally related bimetallic metal-zirconium alkoxides, which can be used as single-source precursors to zirconia-based materials. Detailed analysis of the structures of these complexes provides important insights into the main factors influencing their aggregation. Investigation of the thermal decomposition of these species by TGA, PXRD, SEM, and EDS reveals that they can be used to produce bimetal oxides, such as Li2ZrO3, or a mixture of metal oxides, such as CuO and ZrO2. Significantly, these studies show that thermodynamically unstable forms of zirconia, such as the tetragonal phase, can be stabilized by metal doping, providing the promise for targeted deposition of zirconia materials for specific applications.

17.
Nat Commun ; 13(1): 6632, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333329

ABSTRACT

In this paper, we report a unique type of core-shell crystalline material that combines an inorganic zeolitic cage structure with a macrocyclic host arrangement and that can remove trace levels of iodine from water effectively. These unique assemblies are made up of an inorganic Archimedean truncatedhexahedron (tcu) polyhedron in the kernel which possesses six calixarene-like shell cavities. The cages have good adaptability to guests and can be assembled into a series of supramolecular structures in the crystalline state with different lattice pore shapes. Due to the unique core-shell porous structures, the compounds are not only stable in organic solvents but also in water. The characteristics of the cages enable rapid iodine capture from low concentration aqueous I2/KI solutions (down to 4 ppm concentration). We have studied the detailed process and mechanism of iodine capture and aggregation at the molecular level. The facile synthesis, considerable adsorption capacity, recyclability, and ß- and γ-radiation resistance of the cages should make these materials suitable for the extraction of iodine from aqueous effluent streams (most obviously, radioactive iodide produced by atomic power generation).

18.
Nature ; 608(7923): 518-522, 2022 08.
Article in English | MEDLINE | ID: mdl-35978127

ABSTRACT

Photoelectrochemical (PEC) artificial leaves hold the potential to lower the costs of sustainable solar fuel production by integrating light harvesting and catalysis within one compact device. However, current deposition techniques limit their scalability1, whereas fragile and heavy bulk materials can affect their transport and deployment. Here we demonstrate the fabrication of lightweight artificial leaves by employing thin, flexible substrates and carbonaceous protection layers. Lead halide perovskite photocathodes deposited onto indium tin oxide-coated polyethylene terephthalate achieved an activity of 4,266 µmol H2 g-1 h-1 using a platinum catalyst, whereas photocathodes with a molecular Co catalyst for CO2 reduction attained a high CO:H2 selectivity of 7.2 under lower (0.1 sun) irradiation. The corresponding lightweight perovskite-BiVO4 PEC devices showed unassisted solar-to-fuel efficiencies of 0.58% (H2) and 0.053% (CO), respectively. Their potential for scalability is demonstrated by 100 cm2 stand-alone artificial leaves, which sustained a comparable performance and stability (of approximately 24 h) to their 1.7 cm2 counterparts. Bubbles formed under operation further enabled 30-100 mg cm-2 devices to float, while lightweight reactors facilitated gas collection during outdoor testing on a river. This leaf-like PEC device bridges the gulf in weight between traditional solar fuel approaches, showcasing activities per gram comparable to those of photocatalytic suspensions and plant leaves. The presented lightweight, floating systems may enable open-water applications, thus avoiding competition with land use.

19.
G3 (Bethesda) ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-35801935

ABSTRACT

How sexual selection affects the genome ultimately relies on the strength and type of selection, and the genetic architecture of the involved traits. While associating genotype with phenotype often utilizes standard trait morphology, trait representations in morphospace using geometric morphometric approaches receive less focus in this regard. Here, we identify genetic associations to a sexual ornament, the comb, in the chicken system (Gallus gallus). Our approach combined genome-wide genotype and gene expression data (>30k genes) with different aspects of comb morphology in an advanced intercross line (F8) generated by crossing a wild-type Red Junglefowl with a domestic breed of chicken (White Leghorn). In total, 10 quantitative trait loci were found associated to various aspects of comb shape and size, while 1,184 expression QTL were found associated to gene expression patterns, among which 98 had overlapping confidence intervals with those of quantitative trait loci. Our results highlight both known genomic regions confirming previous records of a large effect quantitative trait loci associated to comb size, and novel quantitative trait loci associated to comb shape. Genes were considered candidates affecting comb morphology if they were found within both confidence intervals of the underlying quantitative trait loci and eQTL. Overlaps between quantitative trait loci and genome-wide selective sweeps identified in a previous study revealed that only loci associated to comb size may be experiencing on-going selection under domestication.


Subject(s)
Chickens , Quantitative Trait Loci , Animals , Chickens/anatomy & histology , Chickens/genetics , Gene Expression , Genomics , Genotype , Phenotype
20.
Chem Sci ; 13(18): 5398-5412, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35655560

ABSTRACT

Methods for measuring enantiomeric excess (ee) of organic molecules by NMR spectroscopy provide rapid analysis using a standard technique that is readily available. Commonly this is accomplished by chiral derivatisation of the detector molecule (producing a chiral derivatisation agent, CDA), which is reacted with the mixture of enantiomers under investigation. However, these CDAs have almost exclusively been based on carbon frameworks, which are generally costly and/or difficult to prepare. In this work, a methodology based on the readily prepared inorganic cyclodiphosph(iii)azane CDA ClP(µ-N t Bu)2POBorn (Born = endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) is shown to be highly effective in the measurement of ee's of chiral amines, involving in situ reaction of the chiral amines (R*NH2) with the P-Cl bond of the CDA followed by quaternization of the phosphorus framework with methyl iodide. This results in sharp 31P NMR signals with distinct chemical shift differences between the diastereomers that are formed, which can be used to obtain the ee directly by integration. Spectroscopic, X-ray structural and DFT studies suggest that the NMR chemical shift differences between diastereomers is steric in origin, with the sharpness of these signals resulting from conformational locking of the bornyl group relative to the P2N2 ring induced by the presence of the P(v)-bonded amino group (R*NH). This study showcases cheap inorganic phosphazane CDAs as simple alternatives to organic variants for the rapid determination of ee.

SELECTION OF CITATIONS
SEARCH DETAIL
...