Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Food Microbiol ; 116: 104367, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689428

ABSTRACT

Microgreens, the immature plants harvested after a few weeks of growth, are perceived as a heathy, nutritious food ingredient but may be susceptible to colonisation by human pathogens including Shiga-toxigenic Escherichia coli (STEC). Some microgreen cultivars accumulate anthocyanins or secrete essential oils which, when extracted or purified, have been reported to inhibit bacterial growth. Therefore, the impact of anthocyanins on bacterial colonisation by STEC (Sakai) was compared for three species that have pigmented cultivars: basil (Ocimum basilicum L.), cabbage (Brassica oleracea L.) and mustard greens (Brassica juncea L.). Inoculation with low concentrations of STEC (Sakai) (3 log10 colony forming units/ml (CFU/ml)) during seed germination resulted in extensive colonisation at the point of harvest, accumulating to âˆ¼ 8 log10 CFU/g FW in all cultivars. Bacterial colonies frequently aligned with anticlinal walls on the surface of epidermal cells of the cotyledons and, in basil, associated with peltate and capitate gland cells. Crude lysates of pigmented and non-pigmented basil cultivars had no impact on STEC (Sakai) growth rates, viability status or biofilm formation. Anthocyanins are located within plant vacuoles of these microgreen cultivars and did not affect colonisation by STEC (Sakai) and pigmentation therefore cannot be considered as a controlling factor in bacterial interactions.


Subject(s)
Anthocyanins , Ocimum basilicum , Humans , Mustard Plant , Cotyledon , Pigmentation
2.
J Exp Bot ; 74(3): 787-799, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36322674

ABSTRACT

Bacterial attachment on root surfaces is an important step preceding the colonization or internalization and subsequent infection of plants by pathogens. Unfortunately, bacterial attachment is not well understood because the phenomenon is difficult to observe. Here we assessed whether this limitation could be overcome using optical trapping approaches. We have developed a system based on counter-propagating beams and studied its ability to guide Pectobacterium atrosepticum (Pba) cells to different root cell types within the interstices of transparent soils. Bacterial cells were successfully trapped and guided to root hair cells, epidermal cells, border cells, and tissues damaged by laser ablation. Finally, we used the system to quantify the bacterial cell detachment rate of Pba cells on root surfaces following reversible attachment. Optical trapping techniques could greatly enhance our ability to deterministically characterize mechanisms linked to attachment and formation of biofilms in the rhizosphere.


Subject(s)
Plant Roots , Soil , Plant Roots/metabolism , Optical Tweezers , Bacteria , Plants , Rhizosphere , Soil Microbiology
3.
New Phytol ; 235(6): 2365-2377, 2022 09.
Article in English | MEDLINE | ID: mdl-35901264

ABSTRACT

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Subject(s)
Fabaceae , Rhizobium , Ecosystem , Fabaceae/genetics , Nitrogen , Nitrogen Fixation , Plant Root Nodulation/genetics , Root Nodules, Plant , Symbiosis
4.
Front Plant Sci ; 12: 747661, 2021.
Article in English | MEDLINE | ID: mdl-34745181

ABSTRACT

Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.

5.
J Exp Bot ; 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34453432

ABSTRACT

The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1, and retinoblastoma related 1, which are down-regulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and demonstrate that this may rely, at least in part, on hindering the function of host EBP1.

6.
J Exp Bot ; 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34310681

ABSTRACT

The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.

7.
Methods Mol Biol ; 2291: 163-175, 2021.
Article in English | MEDLINE | ID: mdl-33704753

ABSTRACT

Plants represent alternative or secondary hosts for Shiga toxin-producing Escherichia coli (STEC), enabling transmission of the pathogens through the food chain on horticultural crops. This becomes a public health concern for plants that are eaten raw or minimally processed, such as leafy salad and fruits. STEC actively interact with plants as hosts, and so to determine the mechanistic basis to the interaction, it is necessary to assess STEC gene function in planta. Here, we describe analysis of an STEC biofilm component, curli, that plays a role in STEC colony formation in plant leaves. It also serves as a suitable example of the approaches required for qualitative and quantitative assessment of functional host colonization traits.


Subject(s)
Biofilms/growth & development , Plant Leaves/microbiology , Shiga-Toxigenic Escherichia coli , Fruit/microbiology , Humans , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/physiology
8.
J Microbiol Methods ; 181: 106132, 2021 02.
Article in English | MEDLINE | ID: mdl-33370554

ABSTRACT

MacConkey broth purple provides a more efficient method for Most Probable Number estimation for Shigatoxigenic Escherichia coli (E.coli) than the process of bacterial enrichment in buffered peptone water followed by detection on MacConkey agar, since it is a single-step process that gives comparable results in plant extracts.


Subject(s)
Culture Media , Escherichia coli Infections/microbiology , Food Microbiology/methods , Shiga-Toxigenic Escherichia coli/isolation & purification , Water Microbiology , Animals , Humans
9.
Theor Appl Genet ; 133(4): 1243-1264, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31965232

ABSTRACT

KEY MESSAGE: Diagnostic markers for Rrs1Rh4 have been identified by testing for associations between SNPs within the Rrs1 interval in 150 barley genotypes and their resistance to Rhynchosporium commune isolates recognised by lines containing Rrs1. Rhynchosporium or barley scald, caused by the destructive fungal pathogen Rhynchosporium commune, is one of the most economically important diseases of barley in the world. Barley landraces from Syria and Jordan demonstrated high resistance to rhynchosporium in the field. Genotyping of a wide range of barley cultivars and landraces, including known sources of different Rrs1 genes/alleles, across the Rrs1 interval, followed by association analysis of this genotypic data with resistance phenotypes to R. commune isolates recognised by Rrs1, allowed the identification of diagnostic markers for Rrs1Rh4. These markers are specific to Rrs1Rh4 and do not detect other Rrs1 genes/alleles. The Rrs1Rh4 diagnostic markers represent a resource that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars. Thirteen out of the 55 most resistant Syrian and Jordanian landraces were shown to contain markers specific to Rrs1Rh4. One of these lines came from Jordan, with the remaining 12 lines from different locations in Syria. One of the Syrian landraces containing Rrs1Rh4 was also shown to have Rrs2. The remaining landraces that performed well against rhynchosporium in the field are likely to contain other resistance genes and represent an important novel resource yet to be exploited by European breeders.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Genetic Loci , Hordeum/genetics , Hordeum/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Alleles , Chromosome Segregation/genetics , Ecotype , Exome/genetics , Genes, Plant , Genetic Markers , Genotype , Geography , Green Fluorescent Proteins/metabolism , Jordan , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Syria
10.
Sci Rep ; 9(1): 12818, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492958

ABSTRACT

S-acylation is a common post-translational modification of membrane protein cysteine residues with many regulatory roles. S-acylation adjacent to transmembrane domains has been described in the literature as affecting diverse protein properties including turnover, trafficking and microdomain partitioning. However, all of these data are derived from mammalian and yeast systems. Here we examine the role of S-acylation adjacent to the transmembrane domain of the plant pathogen perceiving receptor-like kinase FLS2. Surprisingly, S-acylation of FLS2 adjacent to the transmembrane domain is not required for either FLS2 trafficking or signalling function. Expanding this analysis to the wider plant receptor-like kinase family we find that S-acylation adjacent to receptor-like kinase domains is common, affecting ~25% of Arabidopsis receptor-like kinases, but poorly conserved between orthologues through evolution. This suggests that S-acylation of receptor-like kinases at this site is likely the result of chance mutation leading to cysteine occurrence. As transmembrane domains followed by cysteine residues are common motifs for S-acylation to occur, and many S-acyl transferases appear to have lax substrate specificity, we propose that many receptor-like kinases are fortuitously S-acylated once chance mutation has introduced a cysteine at this site. Interestingly some receptor-like kinases show conservation of S-acylation sites between orthologues suggesting that S-acylation has come to play a role and has been positively selected for during evolution. The most notable example of this is in the ERECTA-like family where S-acylation of ERECTA adjacent to the transmembrane domain occurs in all ERECTA orthologues but not in the parental ERECTA-like clade. This suggests that ERECTA S-acylation occurred when ERECTA emerged during the evolution of angiosperms and may have contributed to the neo-functionalisation of ERECTA from ERECTA-like proteins.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Protein Kinases/metabolism , Acylation , Arabidopsis Proteins/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Conserved Sequence , Cysteine/metabolism , Flagellin/pharmacology , Protein Domains , Protein Kinases/chemistry
11.
Theor Appl Genet ; 132(4): 1283-1294, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30666393

ABSTRACT

KEY MESSAGE: The nematode resistance gene H2 was mapped to the distal end of chromosome 5 in tetraploid potato. The H2 resistance gene, introduced into cultivated potatoes from the wild diploid species Solanum multidissectum, confers a high level of resistance to the Pa1 pathotype of the potato cyst nematode Globodera pallida. A cross between tetraploid H2-containing breeding clone P55/7 and susceptible potato variety Picasso yielded an F1 population that segregated approximately 1:1 for the resistance phenotype, which is consistent with a single dominant gene in a simplex configuration. Using genome reduction methodologies RenSeq and GenSeq, the segregating F1 population enabled the genetic characterisation of the resistance through a bulked segregant analysis. A diagnostic RenSeq analysis of the parents confirmed that the resistance in P55/7 cannot be explained by previously characterised resistance genes. Only the variety Picasso contained functionally characterised disease resistance genes Rpi-R1, Rpi-R3a, Rpi-R3b variant, Gpa2 and Rx, which was independently confirmed through effector vacuum infiltration assays. RenSeq and GenSeq independently identified sequence polymorphisms linked to the H2 resistance on the top end of potato chromosome 5. Allele-specific KASP markers further defined the locus containing the H2 gene to a 4.7 Mb interval on the distal short arm of potato chromosome 5 and to positions that correspond to 1.4 MB and 6.1 MB in the potato reference genome.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Solanum tuberosum/genetics , Solanum tuberosum/parasitology , Tetraploidy , Tylenchoidea/pathogenicity , Animals , Chromosome Segregation/genetics , Chromosomes, Plant/genetics , Crosses, Genetic , Genes, Dominant , Genes, Plant , Genetic Loci , NLR Proteins/metabolism , Plant Diseases/genetics , Plant Diseases/parasitology , Polymorphism, Single Nucleotide/genetics , Solanum tuberosum/immunology
12.
Theor Appl Genet ; 131(12): 2513-2528, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30151748

ABSTRACT

KEY MESSAGE: Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Hordeum/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Genetic Association Studies , Genetic Markers , Genotype , Hordeum/microbiology , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide
13.
Front Plant Sci ; 9: 1019, 2018.
Article in English | MEDLINE | ID: mdl-30050557

ABSTRACT

The white potato cyst nematode, Globodera pallida, is an obligate biotrophic pathogen of a limited number of Solanaceous plants. Like other plant pathogens, G. pallida deploys effectors into its host that manipulate the plant to the benefit of the nematode. Genome analysis has led to the identification of large numbers of candidate effectors from this nematode, including the cyst nematode-specific SPRYSEC proteins. These are a secreted subset of a hugely expanded gene family encoding SPRY domain-containing proteins, many of which remain to be characterized. We investigated the function of one of these SPRYSEC effector candidates, GpSPRY-414-2. Expression of the gene encoding GpSPRY-414-2 is restricted to the dorsal pharyngeal gland cell and reducing its expression in G. pallida infective second stage juveniles using RNA interference causes a reduction in parasitic success on potato. Transient expression assays in Nicotiana benthamiana indicated that GpSPRY-414-2 disrupts plant defenses. It specifically suppresses effector-triggered immunity (ETI) induced by co-expression of the Gpa2 resistance gene and its cognate avirulence factor RBP-1. It also causes a reduction in the production of reactive oxygen species triggered by exposure of plants to the bacterial flagellin epitope flg22. Yeast two-hybrid screening identified a potato cytoplasmic linker protein (CLIP)-associated protein (StCLASP) as a host target of GpSPRY-414-2. The two proteins co-localize in planta at the microtubules. CLASPs are members of a conserved class of microtubule-associated proteins that contribute to microtubule stability and growth. However, disruption of the microtubule network does not prevent suppression of ETI by GpSPRY-414-2 nor the interaction of the effector with its host target. Besides, GpSPRY-414-2 stabilizes its target while effector dimerization and the formation of high molecular weight protein complexes including GpSPRY-414-2 are prompted in the presence of the StCLASP. These data indicate that the nematode effector GpSPRY-414-2 targets the microtubules to facilitate infection.

14.
J Sci Food Agric ; 98(14): 5525-5533, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29687887

ABSTRACT

BACKGROUND: To facilitate faster phenotyping of onions (Allium cepa L.), Fourier-transform mid infrared (FT-MIR) spectroscopy with partial least squares (PLS) regression modelling was evaluated for the determination of pungency (pyruvate), sweetness (free sugars) and fructan in juice samples (n = 605) expressed from bulbs from breeding populations. RESULTS: Fourier-transform infrared (FTIR) spectra (range 1700-900 cm-1 ) were obtained from droplets (30 µL) of unprocessed juice. Goodness-of-fit (r2 ) and prediction errors (standard error of cross validation) for optimal PLS models were: soluble solids (0.997, 0.1 °Brix), pyruvate [0.825, 0.8 µmol g-1 fresh weight (FW)], fructan (0.98, 1.9 mg g-1 FW), glucose (0.941, 1.1 mg g-1 FW), fructose (0.967, 1.0 mg g-1 FW) and sucrose (0.919, 1.7 mg g-1 FW). FTIR models for industry sweetness indices based on glucose or sucrose equivalents were also developed. Because of its very low concentration (0.8-12 µmol g-1 FW) relative to other compounds, pyruvate was the weakest model developed. Fructan could be determined spectroscopically without the need for enzymatic digestion. CONCLUSIONS: All of the chemometric models developed are acceptable for screening purposes. Those for soluble solids, fructan and fructose are also suitable for routine analysis. FT-MIR can therefore be utilised for the simultaneous determination of pungency, sweetness and fructan in this crop. © 2018 Society of Chemical Industry.


Subject(s)
Flavoring Agents/analysis , Fructans/chemistry , Onions/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Sugars/analysis , Fructose/analysis , Glucose/analysis , Humans , Pyruvic Acid/analysis , Sucrose/analysis , Taste
15.
Int J Food Microbiol ; 273: 1-10, 2018 May 20.
Article in English | MEDLINE | ID: mdl-29554556

ABSTRACT

Microgreens are edible plants used in food preparation for their appealing flavours and colours. They are grown beyond the point of harvest of sprouted seeds, and normally include the cotyledons and first true leaves. Their method of production is similar to sprouted seeds, which is known to be favourable for growth of microbial pathogens, although there is little data on the potential of food-borne pathogens such as Shigatoxigenic Escherichia coli (STEC) to colonise these plants. We found colonisation of nine different species of microgreen plants by STEC (isolate Sakai, stx-), with high levels of growth over five days, of approximately 5 orders of magnitude, for plants propagated at 21 °C. STEC (Sakai) formed extensive colonies on external tissue, with some evidence for internalisation via stomatal pores. Several factors impacted the level of colonisation: (1) plant tissue type such that for broccoli microgreens, the highest levels of STEC (Sakai) occurred on cotyledons compared to the true leaf and hypocotyl; (2) the route of contamination such that higher levels occurred with contaminated irrigation water compared to direct seed contamination; (3) inoculation dose, although only at low levels of inoculation (3 log10) compared to medium (5 log10) or high (7 log10) levels; (4) environmental factors, including to some extent humidity, but also plant growth substrate types. It was also evident that a starvation response was induced in STEC (Sakai) in low-nutrient plant irrigation medium. Together these data show that microgreens represent a potential hazard of contamination by food-borne pathogens, and to mitigate the risk, they should be considered in the same manner as sprouted seeds.


Subject(s)
Escherichia coli O157/isolation & purification , Food Contamination/analysis , Plant Leaves/microbiology , Plants, Edible/microbiology , Seedlings/microbiology , Brassica/microbiology , Colony Count, Microbial , Escherichia coli O157/growth & development , Food Microbiology , Seeds/microbiology
16.
Microb Biotechnol ; 10(3): 555-569, 2017 05.
Article in English | MEDLINE | ID: mdl-28169510

ABSTRACT

Internalization of food-borne bacteria into edible parts of fresh produce plants represents a serious health risk. Therefore, internalization of verocytotoxigenic E. coli O157:H7 isolate Sakai was assessed in two species associated with outbreaks, spinach (Spinacia oleracea) and lettuce (Lactuca sativa) and compared to the model species Nicotiana benthamiana. Internalization occurred in the leaves and roots of spinach and lettuce throughout a 10 day time-course. The plant species, tissue type and inoculum dose all impacted the outcome. A combination of low inoculum dose (~102 CFU) together with light microscopy imaging highlighted marked differences in the fate of endophytic E. coli O157:H7 Sakai. In the fresh produce species, bacterial growth was restricted but viable cells persisted over 20 days, whereas there was > 400-fold (~2.5 Log10 ) increase in growth in N. benthamiana. Colony formation occurred adjacent to epidermal cells and mesophyll cells or close to vascular bundles of N. benthamiana and contained components of a biofilm matrix, including curli expression and elicitation, extracellular DNA and a limited presence of cellulose. Together the data show that internalization is a relevant issue in crop production and that crop species and tissue need to be considered as food safety risk parameters.


Subject(s)
Escherichia coli O157/physiology , Lactuca/microbiology , Nicotiana/microbiology , Spinacia oleracea/microbiology , Escherichia coli O157/growth & development , Intravital Microscopy , Microbial Viability , Plant Leaves/microbiology , Plant Roots/microbiology
17.
Methods Mol Biol ; 1217: 259-74, 2015.
Article in English | MEDLINE | ID: mdl-25287209

ABSTRACT

Fluorescence recovery after photo-bleaching (FRAP) involves the irreversible bleaching of a fluorescent protein within a specific area of the cell using a high-intensity laser. The recovery of fluorescence represents the movement of new protein into this area and can therefore be used to investigate factors involved in this movement. Here we describe a FRAP method to investigate the effect of a range of pharmacological agents on the targeting of Tobacco mosaic virus movement protein to plasmodesmata.


Subject(s)
Arabidopsis/genetics , Fluorescence Recovery After Photobleaching/methods , Gene Expression Regulation, Plant , Plasmodesmata/genetics , Seedlings/genetics , Tobacco Mosaic Virus/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Brefeldin A/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cytochalasin B/pharmacology , Dinitrobenzenes/pharmacology , Genetic Vectors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Microscopy, Confocal , Plants, Genetically Modified , Plasmodesmata/drug effects , Plasmodesmata/metabolism , Protein Synthesis Inhibitors/pharmacology , Protein Transport/drug effects , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Seedlings/drug effects , Seedlings/metabolism , Sulfanilamides/pharmacology , Thiazolidines/pharmacology , Nicotiana , Tobacco Mosaic Virus/metabolism , Tubulin/genetics , Tubulin/metabolism , Tubulin Modulators/pharmacology
18.
Mol Plant Microbe Interact ; 27(12): 1331-43, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25387134

ABSTRACT

Potyvirus HCPro is a multifunctional protein that, among other functions, interferes with antiviral defenses in plants and mediates viral transmission by aphid vectors. We have visualized in vivo the subcellular distribution and dynamics of HCPro from Potato virus Y and its homodimers, using green, yellow, and red fluorescent protein tags or their split parts, while assessing their biological activities. Confocal microscopy revealed a pattern of even distribution of fluorescence throughout the cytoplasm, common to all these modified HCPros, when transiently expressed in Nicotiana benthamiana epidermal cells in virus-free systems. However, in some cells, distinct additional patterns, specific to some constructs and influenced by environmental conditions, were observed: i) a small number of large, amorphous cytoplasm inclusions that contained α-tubulin; ii) a pattern of numerous small, similarly sized, dot-like inclusions distributing regularly throughout the cytoplasm and associated or anchored to the cortical endoplasmic reticulum and the microtubule (MT) cytoskeleton; and iii) a pattern that smoothly coated the MT. Furthermore, mixed and intermediate forms from the last two patterns were observed, suggesting dynamic transports between them. HCPro did not colocalize with actin filaments or the Golgi apparatus. Despite its association with MT, this network integrity was required neither for HCPro suppression of silencing in agropatch assays nor for its mediation of virus transmission by aphids.


Subject(s)
Aphids/virology , Cysteine Endopeptidases/metabolism , Nicotiana/virology , Plant Diseases/virology , Potyvirus/metabolism , Viral Proteins/metabolism , Animals , Biological Transport , Cysteine Endopeptidases/genetics , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Environment , Gene Expression , Genes, Reporter , Inclusion Bodies, Viral/metabolism , Inclusion Bodies, Viral/ultrastructure , Microtubules/metabolism , Microtubules/ultrastructure , Plant Epidermis/ultrastructure , Plant Epidermis/virology , Plant Leaves/ultrastructure , Plant Leaves/virology , Potyvirus/genetics , Potyvirus/ultrastructure , Recombinant Fusion Proteins , Nicotiana/ultrastructure , Viral Proteins/genetics
19.
BMC Genomics ; 15: 923, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25342461

ABSTRACT

BACKGROUND: The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. RESULTS: The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. CONCLUSION: This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.


Subject(s)
Genomics , Helminth Proteins/genetics , Plant Diseases/parasitology , Solanum tuberosum/parasitology , Tylenchoidea/genetics , Tylenchoidea/physiology , Alternative Splicing , Animals , Female , Helminth Proteins/metabolism , Intracellular Space/parasitology , Life Cycle Stages/genetics , Male , Solanum tuberosum/cytology , Tylenchoidea/growth & development , Tylenchoidea/metabolism
20.
Phytopathology ; 103(4): 333-40, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23506361

ABSTRACT

The foodborne pathogen Escherichia coli O157:H7 is increasingly associated with fresh produce (fruit and vegetables). Bacterial colonization of fresh produce plants can occur to high levels on the external tissue but bacteria have also been detected within plant tissue. However, questions remain about the extent of internalization, its molecular basis, and internal location of the bacteria. We have determined the extent of internalization of E. coli O157:H7 in live spinach and lettuce plants and used high-resolution microscopy to examine colony formation in roots and pathways to internalization. E. coli O157:H7 was found within internal tissue of both produce species. Colonization occurred within the apoplast between plant cells. Furthermore, colonies were detected inside the cell wall of epidermal and cortical cells of spinach and Nicotiana benthamiana roots. Internal colonization of epidermal cells resembled that of the phytopathogen Pectobacterium atrosepticum on potato. In contrast, only sporadic cells of the laboratory strain of E. coli K-12 were found on spinach, with no internal bacteria evident. The data extend previous findings that internal colonization of plants appears to be limited to a specific group of plant-interacting bacteria, including E. coli O157:H7, and demonstrates its ability to invade the cells of living plants.


Subject(s)
Escherichia coli O157/physiology , Escherichia coli/physiology , Lactuca/microbiology , Plant Roots/microbiology , Spinacia oleracea/microbiology , Vegetables/microbiology , Colony Count, Microbial , Endophytes , Escherichia coli/cytology , Escherichia coli/growth & development , Escherichia coli O157/cytology , Escherichia coli O157/growth & development , Food Contamination , Food Microbiology , Host-Pathogen Interactions , Humans , Lactuca/cytology , Microscopy, Electron, Transmission , Pectobacterium/cytology , Pectobacterium/growth & development , Pectobacterium/physiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Plants, Genetically Modified , Rhizosphere , Soil Microbiology , Solanum tuberosum/cytology , Solanum tuberosum/microbiology , Spinacia oleracea/cytology , Nicotiana/cytology , Nicotiana/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...