Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Med Genet ; 61(7): 621-625, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38604752

ABSTRACT

BACKGROUND: Reanalysis of exome/genome data improves diagnostic yield. However, the value of reanalysis of clinical array comparative genomic hybridisation (aCGH) data has never been investigated. Case-by-case reanalysis can be challenging in busy diagnostic laboratories. METHODS AND RESULTS: We harmonised historical postnatal clinical aCGH results from ~16 000 patients tested via our diagnostic laboratory over ~7 years with current clinical guidance. This led to identification of 37 009 copy number losses (CNLs) including 33 857 benign, 2173 of uncertain significance and 979 pathogenic. We found benign CNLs to be significantly less likely to encompass haploinsufficient genes compared with the pathogenic or CNLs of uncertain significance in our database. Based on this observation, we developed a reanalysis pipeline using up-to-date disease association data and haploinsufficiency scores and shortlisted 207 CNLs of uncertain significance encompassing at least one autosomal dominant disease-gene associated with haploinsufficiency or loss-of-function mechanism. Clinical scientist reviews led to reclassification of 15 CNLs of uncertain significance as pathogenic or likely pathogenic. This was ~0.7% of the starting cohort of 2173 CNLs of uncertain significance and 7.2% of 207 shortlisted CNLs. The reclassified CNLs included first cases of CNV-mediated disease for some genes where all previously described cases involved only point variants. Interestingly, some CNLs could not be reclassified because the phenotypes of patients with CNLs seemed distinct from the known clinical features resulting from point variants, thus raising questions about accepted underlying disease mechanisms. CONCLUSIONS: Reanalysis of clinical aCGH data increases diagnostic yield.


Subject(s)
Comparative Genomic Hybridization , DNA Copy Number Variations , Haploinsufficiency , Humans , DNA Copy Number Variations/genetics , Haploinsufficiency/genetics , Exome/genetics , Clinical Relevance
2.
Am J Med Genet A ; 191(1): 234-237, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36271826

ABSTRACT

Adenylosuccinase deficiency is a rare inborn error of metabolism. We present a newborn who died at 52 days of age with clinical features suggestive of severe epileptic encephalopathy and leukodystrophy of unknown cause. Post-mortem examination showed an unusual vacuolar appearance of the brain. A molecular autopsy performed via singleton clinical exome analysis revealed a known pathogenic and a variant of uncertain significance in ADSL that encodes adenylosuccinase. Tests on previously stored plasma samples showed elevated succinyladenosine and succinylaminoimidazole carboxamide riboside levels. Adenylosuccinase activity in stored fibroblasts was only ~5% of control confirming the diagnosis of adenylosuccinase deficiency in the child. The parents opted for a chorionic villus biopsy in a subsequent pregnancy and had a child unaffected by adenylosuccinase deficiency. This report adds vacuolating leukodystrophy as a novel feature of adenylosuccinase deficiency and shows the power of biochemical investigations directed by genomic studies to achieve accurate diagnosis. Importantly, this case demonstrates the importance of anticipatory banking of biological samples for reverse biochemical phenotyping in individuals with undiagnosed disorders who may not survive.


Subject(s)
Adenylosuccinate Lyase , Autistic Disorder , Purine-Pyrimidine Metabolism, Inborn Errors , Child , Infant, Newborn , Infant , Humans , Autopsy , Adenylosuccinate Lyase/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/genetics
3.
J Med Genet ; 59(4): 393-398, 2022 04.
Article in English | MEDLINE | ID: mdl-33879512

ABSTRACT

PURPOSE: The increased adoption of genomic strategies in the clinic makes it imperative for diagnostic laboratories to improve the efficiency of variant interpretation. Clinical exome sequencing (CES) is becoming a valuable diagnostic tool, capable of meeting the diagnostic demand imposed by the vast array of different rare monogenic disorders. We have assessed a clinician-led and phenotype-based approach for virtual gene panel generation for analysis of targeted CES in patients with rare disease in a single institution. METHODS: Retrospective survey of 400 consecutive cases presumed by clinicians to have rare monogenic disorders, referred on singleton basis for targeted CES. We evaluated diagnostic yield and variant workload to characterise the usefulness of a clinician-led approach for generation of virtual gene panels that can incorporate up to three different phenotype-driven gene selection methods. RESULTS: Abnormalities of the nervous system (54.5%), including intellectual disability, head and neck (19%), skeletal system (16%), ear (15%) and eye (15%) were the most common clinical features reported in referrals. Combined phenotype-driven strategies for virtual gene panel generation were used in 57% of cases. On average, 7.3 variants (median=5) per case were retained for clinical interpretation. The overall diagnostic rate of proband-only CES using personalised phenotype-driven virtual gene panels was 24%. CONCLUSIONS: Our results show that personalised virtual gene panels are a cost-effective approach for variant analysis of CES, maintaining diagnostic yield and optimising the use of resources for clinical genomic sequencing in the clinic.


Subject(s)
Exome , Rare Diseases , Exome/genetics , Humans , Rare Diseases/genetics , Retrospective Studies , Exome Sequencing , Workload
5.
Eur J Hum Genet ; 29(9): 1377-1383, 2021 09.
Article in English | MEDLINE | ID: mdl-33603162

ABSTRACT

ERBB4 encodes the tyrosine kinase receptor HER4, a critical regulator of normal cell function and neurodevelopmental processes in the brain. One of the key ligands of HER4 is neureglin-1 (NRG1), and the HER4-NRG1 signalling pathway is essential in neural crest cell migration, and neuronal differentiation. Pharmacological inactivation of HER4 has been shown to hasten the progression of epileptogenesis in rodent models, and heterozygous ERBB4 null mice are shown to have cognitive deficits and delayed motor development. Thus far there is only a single case report in the literature of a heterozygous ERBB4 deletion in a patient with intellectual disability (ID). We identified nine subjects from five unrelated families with chromosome 2q34 deletions, resulting in heterozygous intragenic loss of multiple exons of ERBB4, associated with either non-syndromic ID or generalised epilepsy. In one family, the deletion segregated with ID in five affected relatives. Overall, this case series further supports that haploinsufficiency of ERBB4 leads to non-syndromic intellectual disability or epilepsy.


Subject(s)
Epilepsy/genetics , Intellectual Disability/genetics , Receptor, ErbB-4/genetics , Adolescent , Adult , Child , Chromosomes, Human, Pair 2/genetics , Epilepsy/pathology , Exons , Female , Gene Deletion , Haploinsufficiency , Humans , Intellectual Disability/pathology , Male , Pedigree
6.
Neuromuscul Disord ; 31(1): 21-28, 2021 01.
Article in English | MEDLINE | ID: mdl-33250374

ABSTRACT

SLC5A7 encodes the presynaptic sodium-dependant high-affinity choline transporter 1 (CHT), which uptakes choline to the presynaptic nerve terminal following the breakdown of acetylcholine by the acetylcholinesterase within the synaptic cleft. We report 5 patients from three consanguineous families with congenital myasthenic syndrome type 20 caused by novel mutations in SLC5A7. The individuals from family 1 and 2 were homozygous for c.320G>A; (p.Arg107His) and c.886G>A (p.Ala296Thr), respectively, and their phenotype was characterised by recurrent apnoeic attacks early after birth and learning and speech difficulties in childhood. Individuals from family 3 were homozygous for c.1240T>A (p.Tyr414Asn) and suffered from more severe central and peripheral manifestations with lack of spontaneous movements and respiratory drive and overall minimal response to external stimuli. All individuals tested showed neurophysiological defects compatible with impaired neuromuscular transmission. Combined treatment with cholinesterase inhibitors and ß2-adrenergic agonists was beneficial in patients from family 1 and 2. Affected individuals from family 3 died from complications directly related to their underlying genetic condition. This report provides three novel pathogenic variants in SLC5A7 and highlights the variability in the clinical phenotype, severity and prognosis of this syndrome.


Subject(s)
Membrane Transport Proteins/genetics , Myasthenic Syndromes, Congenital/genetics , Symporters , Acetylcholinesterase/genetics , Adrenergic beta-2 Receptor Antagonists/therapeutic use , Cholinesterase Inhibitors/therapeutic use , Female , Homozygote , Humans , Infant , Infant, Newborn , Male , Mutation, Missense , Myasthenic Syndromes, Congenital/drug therapy , Pedigree , Phenotype , Presynaptic Terminals , Sodium/metabolism
7.
Sci Immunol ; 4(42)2019 12 13.
Article in English | MEDLINE | ID: mdl-31836668

ABSTRACT

Excessive type I interferon (IFNα/ß) activity is implicated in a spectrum of human disease, yet its direct role remains to be conclusively proven. We investigated two siblings with severe early-onset autoinflammatory disease and an elevated IFN signature. Whole-exome sequencing revealed a shared homozygous missense Arg148Trp variant in STAT2, a transcription factor that functions exclusively downstream of innate IFNs. Cells bearing STAT2R148W in homozygosity (but not heterozygosity) were hypersensitive to IFNα/ß, which manifest as prolonged Janus kinase-signal transducers and activators of transcription (STAT) signaling and transcriptional activation. We show that this gain of IFN activity results from the failure of mutant STAT2R148W to interact with ubiquitin-specific protease 18, a key STAT2-dependent negative regulator of IFNα/ß signaling. These observations reveal an essential in vivo function of STAT2 in the regulation of human IFNα/ß signaling, providing concrete evidence of the serious pathological consequences of unrestrained IFNα/ß activity and supporting efforts to target this pathway therapeutically in IFN-associated disease.


Subject(s)
Immune System Diseases/genetics , Interferon Type I/immunology , STAT2 Transcription Factor/genetics , Germ-Line Mutation , Humans , Immune System Diseases/immunology , Infant , Male , Signal Transduction
8.
Am J Med Genet A ; 179(3): 507-511, 2019 03.
Article in English | MEDLINE | ID: mdl-30624022

ABSTRACT

Pathogenic CDKL5 variants cause an X-linked dominant infantile epileptic encephalopathy, predominantly in females. This condition is characterized by an early-onset severe mixed seizure disorder. We present a maternally inherited frameshift CDKL5 c.2809_2810insA p.(Cys937Ter) variant in a 13-year-old male with severe intellectual disability and late-onset generalized epilepsy. Interestingly, the variant segregation in the family is consistent with an X-linked recessive inheritance pattern, which has not previously been described with this gene. This variant is expected to result in truncation of some CDKL5 transcripts, which could potentially account for the later seizure onset and atypical inheritance pattern. Though the possibility of this variant not being causal cannot be completely excluded, this case adds to the variability of the documented phenotypic profile and to the debate around the role of C-terminus variants in CDKL5-related disease.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Frameshift Mutation , Maternal Inheritance , Protein Serine-Threonine Kinases/genetics , Adolescent , Adult , Comparative Genomic Hybridization , DNA Mutational Analysis , Electroencephalography , Female , Humans , Infant, Newborn , Male , Pedigree , Phenotype
9.
Hum Mutat ; 39(3): 394-405, 2018 03.
Article in English | MEDLINE | ID: mdl-29215764

ABSTRACT

Ovarian cancer patients with germline or somatic pathogenic variants benefit from treatment with poly ADP ribose polymerase (PARP) inhibitors. Tumor BRCA1/2 testing is more challenging than germline testing as the majority of samples are formalin-fixed paraffin embedded (FFPE), the tumor genome is complex, and the allelic fraction of somatic variants can be low. We collaborated with 10 laboratories testing BRCA1/2 in tumors to compare different approaches to identify clinically important variants within FFPE tumor DNA samples. This was not a proficiency study but an inter-laboratory comparison to identify common issues. Each laboratory received the same tumor DNA samples ranging in genotype, quantity, quality, and variant allele frequency (VAF). Each laboratory performed their preferred next-generation sequencing method to report on the variants. No false positive results were reported in this small study and the majority of methods detected the low VAF variants. A number of variants were not detected due to the bioinformatics analysis, variant classification, or insufficient DNA. The use of hybridization capture or short amplicon methods are recommended based on a bioinformatic assessment of the data. The study highlights the importance of establishing standards and standardization for tBRCA testing particularly when the test results dictate clinical decisions regarding life extending therapies.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Testing/methods , Neoplasms/genetics , Practice Patterns, Physicians' , Computational Biology , DNA Copy Number Variations/genetics , Exons/genetics , Gene Frequency/genetics , Genotype , Humans
10.
Stem Cell Res Ther ; 8(1): 128, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28583200

ABSTRACT

BACKGROUND: Human embryonic stem cells (hESCs) hold tremendous promise for cell replacement therapies for a range of degenerative diseases. In order to provide cost-effective treatments affordable by public health systems, HLA-matched allogeneic tissue banks of the highest quality clinical-grade hESCs will be required. However only a small number of existing hESC lines are suitable for clinical use; they are limited by moral and ethical concerns and none of them apply Good Manufacturing Practice (GMP) standards to the earliest and critical stages of gamete and embryo procurement. We thus aimed to derive new clinical grade hESC lines of highest quality from fresh surplus GMP grade human embryos. METHODS: A comprehensive screen was performed for suitable combinations of culture media with supporting feeder cells or feeder-free matrix, at different stages, to support expansion of the inner cell mass and to establish new hESC lines. RESULTS: We developed a novel two-step and sequential media system of clinical-grade hESC derivation and successfully generated seven new hESC lines of widely varying HLA type, carefully screened for genetic health, from human embryos donated under the highest ethical and moral standards under an integrated GMP system which extends from hESC banking all the way back to gamete and embryo procurement. CONCLUSIONS: The present study, for the first time, reports the successful derivation of highest-quality clinical-grade hESC lines from fresh poor-quality surplus human embryos generated in a GMP-grade IVF laboratory. The availability of hESC lines of this status represents an important step towards more widespread application of regenerative medicine therapies.


Subject(s)
Cell Culture Techniques , Embryo, Mammalian/cytology , Human Embryonic Stem Cells/cytology , Regenerative Medicine/standards , Animals , Biomarkers/analysis , Blastocyst Inner Cell Mass/chemistry , Blastocyst Inner Cell Mass/cytology , Cell Differentiation , Cell Line , Cell Proliferation , Cell Separation , Culture Media/chemistry , Feeder Cells/chemistry , Haplotypes/genetics , Human Embryonic Stem Cells/chemistry , Humans , Pluripotent Stem Cells/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL