Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 5(10): 13794-13804, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36338328

ABSTRACT

The efficiency of organic bulk-heterojunction (BHJ) solar cells depends greatly on both the bulk and surface structure of the nanostructured bicontinuous interpenetrating network of materials, known as the active layer. The morphology of the top layer of a coated film is often resolved at the scale of a few nanometers, but fine details of the domains and the order within them are more difficult to identify. Here, we report a high-resolution atomic force microscopy (AFM) investigation of various stoichiometries of the well-studied poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) active layer mixture. Images of the surface were obtained using AC-mode AFM exciting higher-order resonance frequencies of a standard silicon probe, a promising technique for acquiring real-space images of organic-based thin films with nanoscale and even submolecular resolution. We provide firm evidence of the nanoscale organization of the P3HT polymer and of the P3HT:PCBM stoichiometric mixtures at the surface-air interface of the BHJ architecture. Our study shows the characteristic periodicity of the regioregular P3HT identified in the nanoscale domain areas with submolecular resolution. Such areas are then distorted in place when adding different quantities of PCBM forming stoichiometric mixtures. When the samples were exposed to ambient light, the morphologies were very different, and submolecular resolution was not achieved. This approach is shown to provide a precise view of the active layer's nanostructure and will be useful for studies of other materials as a function of various parameters, with particular attention to the role of the acceptor in tuning morphology for understanding optimum performance in organic photovoltaic devices.

2.
Nano Lett ; 18(1): 498-504, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29211487

ABSTRACT

Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band gap but requires the formation of highly strained material and has not hitherto been realized. We demonstrate that aligned, lattice-matched graphene can be grown by molecular beam epitaxy using substrate temperatures in the range 1600-1710 °C and coexists with a topologically modified moiré pattern with regions of strained graphene which have giant moiré periods up to ∼80 nm. Raman spectra reveal narrow red-shifted peaks due to isotropic strain, while the giant moiré patterns result in complex splitting of Raman peaks due to strain variations across the moiré unit cell. The lattice-matched graphene has a lower conductance than both the Frenkel-Kontorova-type domain walls and also the topological defects where they terminate. We relate these results to theoretical models of band gap formation in graphene/boron nitride heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...