Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
J Colloid Interface Sci ; 671: 751-769, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38824748

ABSTRACT

Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Catechin , Copper , Nanocomposites , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Copper/chemistry , Copper/pharmacology , Nanocomposites/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Mice , Humans , Catechin/chemistry , Catechin/pharmacology , Catechin/analogs & derivatives , Microbial Sensitivity Tests , Drug Resistance, Bacterial/drug effects , Photochemotherapy , Wound Infection/drug therapy , Wound Infection/pathology , Wound Infection/microbiology , Drug Screening Assays, Antitumor , Staphylococcus aureus/drug effects , Photothermal Therapy , Particle Size , Escherichia coli/drug effects , Cell Survival/drug effects , Cell Line, Tumor , Surface Properties , Cell Proliferation/drug effects
2.
Cells ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891039

ABSTRACT

Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.


Subject(s)
Biodegradation, Environmental , Cadmium , Plants , Cadmium/toxicity , Cadmium/metabolism , Plants/metabolism , Plants/drug effects , Inactivation, Metabolic , Biological Transport , Humans
3.
Appl Opt ; 63(12): 3299-3303, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856481

ABSTRACT

Integration of resonators impacts the utilization of the 3-µm-thick silicon-on-insulator (SOI) platform in photonics integrated circuits (PICs). We propose an integrated resonator leveraging a deep-etch silicon waveguide. Through the utilization of a tunable coupler based on multimode interferometers (MMIs), the resonator achieves high fabrication tolerance and reconfigurability. In a critical-coupling state, it serves as a filter with an extinction ratio (ER) of 23.5 dB and quality (Q) factor of 3.1×105, operating within the range of 1530-1570 nm. In an extreme over-coupling state, it functions as a large-bandwidth delay line, offering continuous change in delay time of 22 ps, nearly wavelength-independent. This work provides devices to the 3-µm-thick silicon photonics device library, enriching the potential applications of this technology platform.

4.
Int J Biol Macromol ; 273(Pt 1): 132914, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844290

ABSTRACT

Pinus taeda L. is a fast-growing softwood with significant commercial value. Understanding structural changes in hemicellulose during growth is essential to understanding the biosynthesis processes occurring in the cell walls of this tree. In this study, alkaline extraction is applied to isolate hemicellulose from Pinus taeda L. stem segments of different ages (1, 2, 3, and 4 years old). The results show that the extracted hemicellulose is mainly comprised of O-acetylgalactoglucomannan (GGM) and 4-O-methylglucuronoarabinoxylan (GAX), with the molecular weights and ratios (i.e., GGM:GAX) of GGM and GAX increasing alongside Pinus taeda L. age. Mature Pinus taeda L. hemicellulose is mainly composed of GGM, and the ratio of (mannose:glucose) in the GGM main chain gradually increases from 2.45 to 3.60 with growth, while the galactose substitution of GGM decreases gradually from 21.36% to 14.65%. The acetylation of GGM gradually increases from 0.33 to 0.45 with the acetyl groups mainly substituting into the O-3 position in the mannan. Furthermore, the contents of arabinose and glucuronic acid in GAX gradually decrease with growth. This study can provide useful information to the research in genetic breeding and high-value utilization of Pinus taeda L.

5.
Colloids Surf B Biointerfaces ; 239: 113911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714079

ABSTRACT

An innovative nanozyme, iron-doped polydopamine (Fe-PDA), which integrates iron ions into a PDA matrix, conferred peroxidase-mimetic activity and achieved a substantial photothermal conversion efficiency of 43.5 %. Fe-PDA mediated the catalysis of H2O2 to produce toxic hydroxyl radicals (•OH), thereby facilitating lipid peroxidation in tumour cells and inducing ferroptosis. Downregulation of solute carrier family 7 no. 11 (SLC7A11) and solute carrier family 3 no. 2 (SLC3A2) in System Xc- resulted in decreased intracellular glutathione (GSH) production and inactivation of the nuclear factor erythroid 2-related factor 2 (NRF2)-glutathione peroxidase 4 (GPX4) pathway, contributing to ferroptosis. Moreover, the application of photothermal therapy (PTT) enhanced the effectiveness of chemodynamic therapy (CDT), accelerating the Fenton reaction for targeted tumour eradication while sparing adjacent non-cancerous tissues. In vivo experiments revealed that Fe-PDA significantly hampered tumour progression in mice, emphasizing the potential of the dual-modality treatment combining CDT and PTT for future clinical oncology applications.


Subject(s)
Ferroptosis , Indoles , Iron , Liver Neoplasms , Photothermal Therapy , Polymers , Indoles/chemistry , Indoles/pharmacology , Ferroptosis/drug effects , Polymers/chemistry , Polymers/pharmacology , Animals , Humans , Iron/chemistry , Iron/pharmacology , Mice , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Mice, Inbred BALB C , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Nanoparticles/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size , Drug Screening Assays, Antitumor , Surface Properties
6.
Int J Biol Macromol ; 269(Pt 1): 132086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705321

ABSTRACT

Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.


Subject(s)
Eye Diseases , Hydrogels , Hydrogels/chemistry , Humans , Biopolymers/chemistry , Eye Diseases/drug therapy , Animals , Drug Delivery Systems , Injections , Biocompatible Materials/chemistry
7.
Anim Nutr ; 17: 110-122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766519

ABSTRACT

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

8.
Small ; : e2402073, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686676

ABSTRACT

Natural polyphenolic compound rosmarinic acid (RA) has good antitumor activity. However, the distinctive tumor microenvironment, characterized by low pH and elevated levels of glutathione (GSH), enhances the tolerance of tumors to the singular anti-tumor treatment mode using RA, resulting in unsatisfactory therapeutic efficacy. Targeting nonapoptotic programmed cell death processes may provide another impetus to inhibit tumor growth. RA possesses the capability to coordinate with metal elements. To solve the effect restriction of the above single treatment mode, it is proposed to construct a self-assembled nanocomposite, Fe-RA. Under tumor microenvironment, Fe-RA nanocomposite exerts the characteristics of POD-like enzyme activity and depletion of GSH, producing a large amount of hydroxyl radical (·OH) while disrupting the antioxidant defense system of tumor cells. Moreover, due to the enhanced permeability and retention effect (EPR), Fe-RA can transport Fe2+ to a greater extent to tumor cells and increase intracellular iron content. Causing an imbalance in iron metabolism in tumor cells and promoting cell ferroptosis. The results of the synchrotron X-ray absorption spectroscopy (XAS) and high-resolution mass spectrometry (HRMS) prove the successful complexation of Fe-RA nanocomposite. Density functional theory (DFT) explains the efficient catalytic mechanism of its peroxide-like enzyme activity and the reaction principle with GSH.

9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 249-255, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645848

ABSTRACT

Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/etiology , Mitochondria/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/cytology , Reactive Oxygen Species/metabolism , Apoptosis , Animals , Antioxidants/pharmacology
10.
Elife ; 122024 Mar 05.
Article in English | MEDLINE | ID: mdl-38442142

ABSTRACT

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Subject(s)
Cytokine Release Syndrome , Interleukin-4 , Animals , Mice , Liver X Receptors , Leucine/pharmacology , Lipopolysaccharides , Cytokines , Signal Transduction , Macrophages , Mechanistic Target of Rapamycin Complex 1
11.
Theranostics ; 14(5): 1939-1955, 2024.
Article in English | MEDLINE | ID: mdl-38505601

ABSTRACT

Rationale: Cancer continues to be a significant public health issue. Traditional treatments such as surgery, radiotherapy, and chemotherapy often fall short because of intrinsic issues such as lack of specificity and poor drug delivery, leading to insufficient drug concentration at the tumor site and/or potential side effects. Consequently, improving the delivery of conventional chemotherapy drugs like doxorubicin (DOX) is crucial for their therapeutic efficacy. Successful cancer treatment is achieved when regulated cell death (RCD) of cancer cells, which includes apoptotic and non-apoptotic processes such as ferroptosis, is fundamental to successful cancer treatment. The developing field of nanozymes holds considerable promise for innovative cancer treatment approaches. Methods: A dual-metallic nanozyme system encapsulated with DOX was created, derived from metal-organic frameworks (MOFs), designed to combat tumors by depleting glutathione (GSH) and concurrently liberating DOX. The initial phase of the study examined the GSH oxidase-mimicking function of the dimetallic nanozyme (ZIF-8/SrSe) through enzyme kinetic assays and Density Functional Theory (DFT) simulations. Following this, we probed the ability of ZIF-8/SrSe@DOX to release DOX in response to the tumor microenvironment in vitro, alongside examining its anticancer capabilities and mechanisms prompting apoptosis or ferroptosis in cancer cells. Moreover, we established tumor-bearing animal models to corroborate the anti-tumor effectiveness of our nanozyme complex and to identify the involved apoptotic and ferroptotic pathways implicated. Results: Enzyme kinetic analyses demonstrated that the ZIF-8/SrSe nanozyme exhibits substantial GSH oxidase-like activity, effectively oxidizing reduced GSH to glutathione disulfide (GSSG), while also inhibiting glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). This inhibition led to an imbalance in iron homeostasis, pronounced caspase activation, and subsequent induction of apoptosis and ferroptosis in tumor cells. Additionally, the ZIF-8/SrSe@DOX nanoparticles efficiently delivered DOX, causing DNA damage and further promoting apoptotic and ferroptotic pathways. Conclusions: This research outlines the design of a novel platform that combines chemotherapeutic agents with a Fenton reaction catalyst, offering a promising strategy for cancer therapy that leverages the synergistic effects of apoptosis and ferroptosis.


Subject(s)
Ferroptosis , Neoplasms , Regulated Cell Death , Animals , Apoptosis , Drug Delivery Systems , Glutathione , Glutathione Disulfide , Doxorubicin/pharmacology , Oxidoreductases , Cell Line, Tumor , Neoplasms/drug therapy , Tumor Microenvironment
12.
Heliyon ; 10(5): e26755, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434372

ABSTRACT

The main aim of this study is to examine the evolving landscape of agricultural socialized services and their impact on the consistent growth of grain production in China. Using panel data from 2007 to 2020, we employ the Entropy Method to gauge the dynamic changes in agricultural socialized services that have contributed to the steady increase in grain production. The research methods include static panel, mediator, and threshold regression models to investigate the effects and mechanisms underpinning the improvement of agricultural socialized services on grain production growth. The empirical findings demonstrate a significantly positive correlation between enhanced agricultural socialized services, such as means of production services, sci-tech information services, and social public services, and increased grain production. This positive impact persists even with limited grain production resources. A mediating effect was identified, whereby agricultural socialized services indirectly stimulate grain production growth by encouraging large-scale agricultural land management. Furthermore, threshold analysis indicates the presence of a single threshold effect linked to the level of agricultural socialization services. This threshold effect plays a pivotal role in the relationship between large-scale agricultural management and steady grain production growth. The study suggests an enhancement of agricultural socialized services can promote sustained growth in grain production.

13.
Mater Today Bio ; 25: 100993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38440110

ABSTRACT

Osteoarthritis (OA) is a chronic inflammatory joint disease characterized by progressive cartilage degeneration, synovitis, and osteoid formation. In order to effectively treat OA, it is important to block the harmful feedback caused by reactive oxygen species (ROS) produced during joint wear. To address this challenge, we have developed injectable nanocomposite hydrogels composed of polygallate-Mn (PGA-Mn) nanoparticles, oxidized sodium alginate, and gelatin. The inclusion of PGA-Mn not only enhances the mechanical strength of the biohydrogel through a Schiff base reaction with gelatin but also ensures efficient ROS scavenging ability. Importantly, the nanocomposite hydrogel exhibits excellent biocompatibility, allowing it to effectively remove ROS from chondrocytes and reduce the expression of inflammatory factors within the joint. Additionally, the hygroscopic properties of the hydrogel contribute to reduced intra-articular friction and promote the production of cartilage-related proteins, supporting cartilage synthesis. In vivo experiments involving the injection of nanocomposite hydrogels into rat knee joints with an OA model have demonstrated successful reduction of osteophyte formation and protection of cartilage from wear, highlighting the therapeutic potential of this approach for treating OA.

14.
ACS Nano ; 18(12): 8885-8905, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38465890

ABSTRACT

As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.


Subject(s)
Intervertebral Disc Degeneration , Mitochondrial Diseases , Nanoparticles , Rats , Animals , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Manganese/metabolism , Oxidative Stress , Mitochondria , Phenols , Mitochondrial Diseases/metabolism , Gallic Acid
15.
J Anim Sci Biotechnol ; 15(1): 22, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331814

ABSTRACT

BACKGROUND: Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS: In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS: Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1ß, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS: ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.

16.
Animals (Basel) ; 14(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338165

ABSTRACT

Post-weaning diarrhea significantly contributes to the high mortality in pig production, but the metabolic changes in weaned piglets with diarrhea remain unclear. This study aimed to identify the differential metabolites in the urine of diarrheal weaned piglets and those of healthy weaned piglets to reveal the metabolic changes associated with diarrhea in weaned piglets. Nine 25-day-old piglets with diarrhea scores above 16 and an average body weight of 5.41 ± 0.18 kg were selected for the diarrhea group. Corresponding to the body weight and sex of the diarrhea group, nine 25-month-old healthy piglets with similar sex and body weights of 5.49 ± 0.21 kg were selected as the control group. Results showed that the serum C-reactive protein and cortisol of piglets in the diarrhea group were higher than those in the control group (p < 0.05). The mRNA expression of TNF-α, IFN-γ in the jejunum and colon, and IL-1ß in the jejunum were increased in diarrhea piglets (p < 0.05), accompanied by a reduction in the mRNA expression of ZO-1, ZO-2, and CLDN1 in the jejunum and colon (p < 0.05); mRNA expression of OCLN in the colon also occurred (p < 0.05). Metabolomic analysis of urine revealed increased levels of inosine, hypoxanthine, guanosine, deoxyinosin, glucosamine, glucosamine-1-p, N-Acetylmannosamine, chitobiose, and uric acid, identified as differential metabolites in diarrhea piglets compared to the controls. In summary, elevated weaning stress and inflammatory disease were associated with the abnormalities of purine metabolism and the hexosamine biosynthetic pathway of weaned piglets. This study additionally indicated the presence of energy metabolism-related diseases in diarrheal weaned piglets.

17.
Anim Nutr ; 16: 409-421, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38371474

ABSTRACT

Rotaviruses (RV) are a major cause of severe gastroenteritis, particularly in neonatal piglets. Despite the availability of effective vaccines, the development of antiviral therapies for RV remains an ongoing challenge. Retinoic acid (RA), a metabolite of vitamin A, has been shown to have anti-oxidative and antiviral properties. However, the mechanism by which RA exerts its intestinal-protective and antiviral effects on RV infection is not fully understood. The study investigates the effects of RA supplementation in Duroc × Landrace × Yorkshire (DLY) piglets challenged with RV. Thirty-six DLY piglets were assigned into six treatments, including a control group, RA treatment group with two concentration gradients (5 and 15 mg/d), RV treatment group, and RV treatment group with the addition of different concentration gradients of RA (5 and 15 mg/d). Our study revealed that RV infection led to extensive intestinal architecture damage, which was mitigated by RA treatment at lower concentrations by increasing the villus height and villus height/crypt depth ratio (P < 0.05), enhancing intestinal stem cell signaling and promoting intestinal barrier functions. In addition, 15 mg/d RA supplementation significantly increased NRF2 and HO-1 protein expression (P < 0.05) and GSH content (P < 0.05), indicating that RA supplementation can enhance anti-oxidative signaling and redox homeostasis after RV challenge. Additionally, the research demonstrated that RA exerts a dual impact on the regulation of autophagy, both stimulating the initiation of autophagy and hindering the flow of autophagic flux. Through the modulation of autophagic flux, RA influence the progression of RV infection. These findings provide new insights into the regulation of redox hemostasis and autophagy by RA and its potential therapeutic application in RV infection.

18.
Sci Rep ; 14(1): 4373, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388553

ABSTRACT

Cancer therapy necessitates the development of novel and effective treatment modalities to combat the complexity of this disease. In this project, we propose a synergistic approach by combining chemo-photothermal treatment using gold nanorods (AuNRs) supported on thiol-functionalized mesoporous silica, offering a promising solution for enhanced lung cancer therapy. To begin, mesoporous MCM-41 was synthesized using a surfactant-templated sol-gel method, chosen for its desirable porous structure, excellent biocompatibility, and non-toxic properties. Further, thiol-functionalized MCM-41 was achieved through a simple grafting process, enabling the subsequent synthesis of AuNRs supported on thiol-functionalized MCM-41 (AuNR@S-MCM-41) via a gold-thiol interaction. The nanocomposite was then loaded with the anticancer drug doxorubicin (DOX), resulting in AuNR@S-MCM-41-DOX. Remarkably, the nanocomposite exhibited pH/NIR dual-responsive drug release behaviors, facilitating targeted drug delivery. In addition, it demonstrated exceptional biocompatibility and efficient internalization into A549 lung cancer cells. Notably, the combined photothermal-chemo therapy by AuNR@S-MCM-41-DOX exhibited superior efficacy in killing cancer cells compared to single chemo- or photothermal therapies. This study showcases the potential of the AuNR@S-MCM-41-DOX nanocomposite as a promising candidate for combined chemo-photothermal therapy in lung cancer treatment. The innovative integration of gold nanorods, thiol-functionalized mesoporous silica, and pH/NIR dual-responsive drug release provides a comprehensive and effective therapeutic approach for improved outcomes in lung cancer therapy. Future advancements based on this strategy hold promise for addressing the challenges posed by cancer and transforming patient care.


Subject(s)
Lung Neoplasms , Nanotubes , Humans , Photothermal Therapy , Lung Neoplasms/drug therapy , Gold/chemistry , Doxorubicin , Silicon Dioxide/chemistry , Phototherapy , Nanotubes/chemistry
19.
Adv Healthc Mater ; 13(11): e2302556, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38238011

ABSTRACT

Drug-induced liver injury (DILI) is a severe condition characterized by impaired liver function and the excessive activation of ferroptosis. Unfortunately, there are limited options currently available for preventing or treating DILI. In this study, MnO2 nanoflowers (MnO2Nfs) with remarkable capabilities of mimicking essential antioxidant enzymes, including catalase, superoxide dismutase (SOD), and glutathione peroxidase are successfully synthesized, and SOD is the dominant enzyme among them by density functional theory. Notably, MnO2Nfs demonstrate high efficiency in effectively eliminating diverse reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2 •-), and hydroxyl radical (•OH). Through in vitro experiments, it is demonstrated that MnO2Nfs significantly enhance the recovery of intracellular glutathione content, acting as a potent inhibitor of ferroptosis even in the presence of ferroptosis activators. Moreover, MnO2Nfs exhibit excellent liver accumulation properties, providing robust protection against oxidative damage. Specifically, they attenuate acetaminophen-induced ferroptosis by inhibiting ferritinophagy and activating the P62-NRF2-GPX4 antioxidation signaling pathways. These findings highlight the remarkable ROS scavenging ability of MnO2Nfs and hold great promise as an innovative and potential clinical therapy for DILI and other ROS-related liver diseases.


Subject(s)
Chemical and Drug Induced Liver Injury , Ferroptosis , Manganese Compounds , Oxides , Reactive Oxygen Species , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Ferroptosis/drug effects , Oxides/chemistry , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Mice , Reactive Oxygen Species/metabolism , Oxidation-Reduction , Humans , Male , Acetaminophen , Liver/drug effects , Liver/metabolism , Liver/injuries , Liver/pathology , Antioxidants/pharmacology , Antioxidants/chemistry , Superoxide Dismutase/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Mice, Inbred C57BL
20.
Eur Spine J ; 33(3): 1069-1080, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246903

ABSTRACT

PURPOSE: To compare the clinical outcomes and radiographic outcomes of cortical bone trajectory (CBT) and traditional trajectory (TT) pedicle screw fixation in patients treated with single-level transforaminal lumbar interbody fusion (TLIF). METHODS: This trial included a total of 224 patients with lumbar spine disease who required single-level TLIF surgery. Patients were randomly assigned to the CBT and TT groups at a 1:1 ratio. Demographics and clinical and radiographic data were collected to evaluate the efficacy and safety of CBT and TT screw fixation in TLIF. RESULTS: The baseline characteristic data were similar between the CBT and TT groups. Back and leg pain for both the CBT and TT groups improved significantly from baseline to 24 months postoperatively. The CBT group experienced less pain than the TT group at one week postoperatively. The postoperative radiographic results showed that the accuracy of screw placement was significantly increased in the CBT group compared with the TT group (P < 0.05). The CBT group had a significantly lower rate of FJV than the TT group (P < 0.05). In addition, the rate of fusion and the rate of screw loosening were similar between the CBT and TT groups according to screw loosening criteria. CONCLUSION: This prospective, randomized controlled analysis suggests that clinical outcomes and radiographic characteristics, including fusion rates and caudal screw loosening rates, were comparable between CBT and TT screw fixation. Compared with the TT group, the CBT group showed advantages in the accuracy of screw placement and the FJV rate. CLINICAL TRIALS REGISTRATION: This trial has been registered at the US National Institutes of Health Clinical Trials Registry: NCT03105167.


Subject(s)
Pedicle Screws , Spinal Fusion , Humans , Pedicle Screws/adverse effects , Spinal Fusion/methods , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Prospective Studies , Treatment Outcome , Cortical Bone/diagnostic imaging , Cortical Bone/surgery , Pain/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...