Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Br J Pharmacol ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922702

ABSTRACT

BACKGROUND AND PURPOSE: Traditional Chinese medicine (TCM) played an important role in controlling the COVID-19 pandemic, but the scientific basis and its active ingredients are still weakly studied. This study aims to decipher the underlying anti-SARS-CoV-2 mechanisms of glycyrrhetinic acid (GA). EXPERIMENTAL APPROACH: GA's anti-SARS-CoV-2 effect was verified both in vitro and in vivo. Homogeneous time-resolved fluorescence assays, biolayer interferometry technology, and molecular docking were employed to examine interactions of GA with human stimulator of interferon genes (hSTING). Immunofluorescence staining, western blot, and RT-qPCR were used to investigate nuclear translocation of interferon regulatory factor 3 (IRF3) and levels of STING target genes. Pharmacokinetics of GA was studied in mice. KEY RESULTS: GA could directly bind to Ser162 and Tyr240 residues of hSTING, thus up-regulating downstream targets and activation of the STING signalling pathway. Such activation is crucial for limiting the replication of SARS-CoV-2 Omicron in Calu-3 cells and protecting against lung injury induced by SARS-CoV-2 Omicron infection in K18-ACE2 transgenic mice. Immunofluorescence staining and western blot indicated that GA increased levels of phosphorylated STING, phosphorylated TANK-binding kinase-1, and cyclic GMP-AMP synthase (cGAS). Importantly, GA increased nuclear translocation of IRF3. Pharmacokinetic analysis of GA in mice indicated it can be absorbed into circulation and detected in the lung at a stable level. CONCLUSION AND IMPLICATIONS: Activation of the cGAS-STING pathway through the GA-STING-IRF3 axis is essential for the antiviral activity of GA in mice, providing new insights into the potential translation of GA for treating SARS-CoV-2 in patients.

2.
Eur J Pharmacol ; 977: 176742, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880216

ABSTRACT

Polycystic ovary syndrome (PCOS), a common endocrine disorder affecting premenopausal women, is associated with various metabolic consequences such as insulin resistance, hyperlipidemia, obesity, and type 2 diabetes mellitus (T2DM). Insulin sensitizers, such as metformin and pioglitazone, though effective, often leads to significant gastrointestinal adverse effects or weight gain, limiting its suitability for women with PCOS. There is an urgent need for safe, effective and affordable agents. Dapagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, enhances glucose elimination through urine, thereby reducing body weight and improving glucose and lipid metabolism. Nevertheless, it is not currently recommended as a therapeutic option for PCOS in clinical guidelines. In this study, we systematically examined the impact of dapagliflozin on an obese PCOS mouse model, focusing on alterations in glucose metabolism, adipose tissue morphology, and plasma lipid profile. Obese PCOS was induced in mice by continuous dihydrotestosterone (DHEA) injections over 21 days and high-fat diet (HFD) feeding. PCOS mice were then orally gavaged with dapagliflozin (1 mg/kg), metformin (50 mg/kg), or vehicle daily for 8 weeks, respectively. Our results demonstrated that dapagliflozin significantly prevented body weight gain and reduced fat mass in obese PCOS mice. Meanwhile, dapagliflozin treatment improved glucose tolerance and increased insulin sensitivity compared to the control PCOS mice. Furthermore, dapagliflozin significantly improved adipocyte accumulation and morphology in white adipose tissue, resulting in a normalized plasma lipid profile in PCOS mice. In conclusion, our results suggest that dapagliflozin is an effective agent in managing glucose and lipid metabolism disorders in obese PCOS mice.


Subject(s)
Benzhydryl Compounds , Glucosides , Insulin Resistance , Obesity , Polycystic Ovary Syndrome , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Glucosides/pharmacology , Glucosides/therapeutic use , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Female , Mice , Obesity/drug therapy , Obesity/metabolism , Obesity/complications , Diet, High-Fat/adverse effects , Disease Models, Animal , Mice, Obese , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Lipid Metabolism/drug effects , Mice, Inbred C57BL , Blood Glucose/drug effects , Blood Glucose/metabolism
3.
Theranostics ; 14(8): 3282-3299, 2024.
Article in English | MEDLINE | ID: mdl-38855179

ABSTRACT

Rationale: Pharmacological targeting of mitochondrial ion channels is developing as a new direction in cancer therapy. The opening or closing of these channels can impact mitochondrial function and structure by interfering with intracellular ion homeostasis, thereby regulating cell fate. Nevertheless, their abnormal expression or regulation poses challenges in eliminating cancer cells, and further contributes to metastasis, recurrence, and drug resistance. Methods: We developed an engineered mitochondrial targeted delivery system with self-reinforcing potassium ion (K+) influx via amphiphilic mitochondrial targeting polymer (TMP) as carriers to co-deliver natural K+ channel agonists (Dinitrogen oxide, DZX) and artificial K+ channel molecules (5F8). Results: Using this method, DZX specifically activated natural K+ channels, whereas 5F8 assembled artificial K+ channels on the mitochondrial membrane, leading to mitochondrial K+ influx, as well as oxidative stress and activation of the mitochondrial apoptotic pathway. Conclusion: The synergistic effect of 5F8 and DZX presents greater effectiveness in killing cancer cells than DZX alone, and effectively inhibited tumor recurrence and lung metastasis following surgical resection of breast cancer tumors in animal models. This strategy innovatively integrates antihypertensive drugs with artificial ion channel molecules for the first time to effectively inhibit tumor recurrence and metastasis by disrupting intracellular ion homeostasis, which will provide a novel perspective for postoperative tumor therapy.


Subject(s)
Homeostasis , Mitochondria , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Homeostasis/drug effects , Mice , Cell Line, Tumor , Female , Neoplasm Recurrence, Local/prevention & control , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Potassium/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Ion Channels/metabolism , Potassium Channels/metabolism , Mice, Nude , Neoplasm Metastasis
4.
Anal Chem ; 96(19): 7634-7642, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691624

ABSTRACT

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.


Subject(s)
Metabolomics , Software , Humans , Metabolomics/methods , Lung Neoplasms/metabolism , Pyridines/chemistry
5.
Bioorg Chem ; 145: 107187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354502

ABSTRACT

Ischemic stroke has high mortality and morbidity rates and is the second leading cause of death in the world, but there is no definitive medicine. Seventy Flavors Pearl Pill (SFPP) is a classic formula in Tibetan Medicine. Clinical practice has shown the attenuation effect of SFPP on blood pressure disorders, strokes and their sequelae and other neurological symptoms, but its mechanism remains to be elucidated. In this study, we established three animal models in vivo and three cell models to evaluate the anti-hypoxia, anti-ischemia, and reperfusion injury prevention effects of SFPP. Quantitative proteomics revealed that oxidative phosphorylation (OXPHOS) is essential for SFPP's efficacy. Then, cysteine-activity based protein profiling technology, which reflects redox stress at the proteome level, was employed to illustrate that SFPP brought functional differences of critical proteins in OXPHOS. In addition, quantitative metabolomics revealed that SFPP affects whole energy metabolism with OXPHOS as the core. Finally, we performed a compositional identification of SFPP to initially explore the components of potential interventions in OXPHOS. These results provide new perspectives and tools to explore the mechanism of herbal medicine. The study suggests that OXPHOS could be a potential target for further research and intervention of ischemic stroke treatment.


Subject(s)
Ischemic Stroke , Reperfusion Injury , Stroke , Animals , Proteomics , Oxidative Phosphorylation , Stroke/drug therapy , Reperfusion Injury/drug therapy , Oxidative Stress
6.
J Chromatogr A ; 1713: 464505, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37976901

ABSTRACT

Analysis of exposure to traditional Chinese medicine (TCM) in vivo based on mass spectrometry is helpful for the screening of effective ingredients of TCM and the development of new drugs. The method of screening biomarkers through metabolomics technology is a nontargeted research method to explore the differential components between two sets of biological samples. By taking this advantage, this study aims to takes Forsythia suspensa, which is a TCM also known as Lian Qiao (LQ), as the research object and to study its in vivo exposure by using metabolomics technology. By comparing the significant differences between biological samples before and after administration, it could be focused on the components that were significantly upregulated, where a complete set of analysis strategies for nontargeted TCM in vivo exposure mass spectrometry was established. Furthermore, the threshold parameters for peak extraction, parameter selection during statistical data analysis, and sample concentration multiples in this method have also been optimized. More interestingly, by using the established analysis strategy, we found 393 LQ-related chemical components in mice after administration, including 102 prototypes and 291 LQ-related metabolites, and plotted their metabolic profiles in vivo. In short, this study has obtained a complete mass spectrum of LQ exposure in mice in vivo for the first time, which provides a reference for research on the active ingredients of LQ in vivo. More importantly, compared with other methods, the analysis strategy of nontargeted exposure of TCM in vivo-based mass spectrometry, constructed by using this research method, has good universality and does not require self-developed postprocessing software. It is worth mentioning that, for the identification and characterization of trace amounts of metabolites in vivo, this analysis strategy has no discrimination and has a detection capability similar to that of highly exposed components.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Mice , Animals , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Medicine, Chinese Traditional , Metabolomics/methods , Herbal Medicine , Plants, Medicinal/metabolism
7.
Adv Mater ; 36(5): e2310078, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947048

ABSTRACT

Chimeric antigen receptor (CAR)-T cell immunotherapy is approved in the treatment of hematological malignancies, but remains far from satisfactory in solid tumor treatment due to inadequate intra-tumor CAR-T cell infiltration. Herein, an injectable supramolecular hydrogel system, based on self-assembly between cationic polymer mPEG-PCL-PEI (PPP) conjugated with T cell targeting anti-CD3e f(ab')2 fragment and α-cyclodextrin (α-CD), is designed to load plasmid CAR (pCAR) with a T cell specific CD2 promoter, which successfully achieves in situ fabrication and effective accumulation of CAR-T cells at the tumor site in humanized mice models. More importantly, due to this tumor microenvironment reprogramming, secretion of cellular inflammatory cytokines (interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) or tumor killer protein granzyme B is significantly promoted, which reverses the immunosuppressive microenvironment and significantly enhances the intra-tumor CAR-T cells and cytotoxic T cells infiltration. To the best of the current knowledge, this is a pioneer report of using injectable supramolecular hydrogel for in situ reprogramming CAR-T cells, which might be beneficial for solid tumor CAR-T immunotherapy.


Subject(s)
Hydrogels , Neoplasms , Animals , Mice , Cytokines/metabolism , Immunotherapy , Neoplasms/pathology , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment , Humans
8.
Expert Opin Drug Metab Toxicol ; 19(12): 1023-1032, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38145500

ABSTRACT

BACKGROUND: Celastrol is known as one of the most medicinally valuable compounds. However, the pharmaceutical application of celastrol is significantly limited due to high toxicity, while there are few reports on the mechanism of toxicity. METHODS: This study searched for possible toxic metabolites through phase I in vitro metabolism and glutathione capture experiments. Then in vivo metabolism experiments in mice and rats were conducted to look for metabolites in vivo. Finally, mice in vivo toxicity experiment was conducted to verify the toxicity of different doses of celastrol to mice. RESULTS: In the in vivo and in vitro metabolism experiments, we found 7 phase I metabolites in vitro, 9 glutathione conjugation metabolites in vitro, and 20 metabolites in vivo. The metabolic soft points of celastrol could be the quinone methyl structure at C3-OH and C6. In vivo toxicity experiments show that celastrol causes weight loss, diarrhea, gastrointestinal tract and liver inflammation in mice. CONCLUSIONS: This study analyzed the metabolites and possible metabolic soft spots of celastrol, and its hepatotoxicity and gastrointestinal toxicity were demonstrated through in vivo studies for the first time. The results might provide an important basis for potential structural modification to increase the druggability of celastrol.


Subject(s)
Gastrointestinal Tract , Triterpenes , Rats , Mice , Humans , Animals , Pentacyclic Triterpenes , Mass Spectrometry , Glutathione/metabolism , Triterpenes/adverse effects , Triterpenes/metabolism
9.
Electrophoresis ; 44(17-18): 1361-1368, 2023 09.
Article in English | MEDLINE | ID: mdl-37578082

ABSTRACT

As a novel drug delivery system, liposomes were used to improve pharmacokinetics/pharmacodynamics (PK/PD) characters, minimize toxicity, and enhance drug-target selectivity. However, heterogeneity of drug releasing process and liposome itself challenged traditional pharmaceutical analytical techniques, especially in vivo pharmacokinetic studies. In this study, a novel liposomal doxorubicin (L-DOX) pharmacokinetic analysis strategy was developed with capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) detector. The background electrolyte (BGE) system was composed of borate and sodium dodecyl sulfate (SDS), which was optimized to successfully achieve simultaneous online separation and quantitative analysis of free DOX and liposome-encapsulated DOX. The method was applied to the in vivo pharmacokinetic study of L-DOX in rats. The results showed that the concentration of total DOX (T-DOX) was gradually decreasing, while the concentration of L-DOX was relatively stable, with a concentration of 31.6 ± 4.8 µg/mL within 24 h. It was the first time to achieve liposomal drugs in vivo analysis with CE-LIF. CE-LIF was proved as potential rapidly real-time analytical methods for liposomal drugs in vivo occurrence monitoring.


Subject(s)
Doxorubicin , Liposomes , Rats , Animals , Doxorubicin/analysis , Polyethylene Glycols , Electrophoresis, Capillary/methods
10.
Expert Rev Anti Infect Ther ; 21(8): 871-889, 2023.
Article in English | MEDLINE | ID: mdl-37481738

ABSTRACT

BACKGROUND: Coronavirus 2019 (COVID-19) poses a serious threat to human health. In China, traditional Chinese medicine (TCM), mainly based on the Maxing Shigan decoction (MXSGD), is used in conjunction with western medicine to treat COVID-19. RESEARCH DESIGN AND METHODS: We conducted a network meta-analysis to investigate whether MXSGD-related TCM combined with western medicine is more effective in treating COVID-19 compared to western medicine alone. Additionally, using network pharmacology, cross-docking, and molecular dynamics (MD) simulation to explore the potential active compounds and possible targets underlying the therapeutic effects of MXSGD-related TCM. RESULTS: MXSGD-related TCM combined with western medicine was better for treating COVID-19 compared to western medicine alone. Network pharmacological analysis identified 43 shared ingredients in the MXSGD-related TCM prescriptions and 599 common target genes. Cross-docking of the 43 compounds with 154 proteins that matched these genes led to the identification of 60 proteins. Pathway profiling revealed that the active ingredients participated in multiple signaling pathways that contribute to their efficacy. Molecular docking and MD simulation demonstrated that MOL007214, the most promising molecule, could stably bind to the active site of SARS-CoV-2 3CLpro. CONCLUSION: This study demonstrates the important role of MXSGD-related TCM in the treatment of COVID-19.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional , SARS-CoV-2 , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Molecular Docking Simulation
11.
Curr Drug Metab ; 24(3): 200-210, 2023.
Article in English | MEDLINE | ID: mdl-37157207

ABSTRACT

BACKGROUND: Global xenobiotic profiling (GXP) is to detect and structurally characterize all xenobiotics in biological samples using mainly liquid chromatography-high resolution mass spectrometry (LC-HRMS) based methods. GXP is highly needed in drug metabolism study, food safety testing, forensic chemical analysis, and exposome research. For detecting known or predictable xenobiotics, targeted LC-HRMS data processing methods based on molecular weights, mass defects and fragmentations of analytes are routinely employed. For profiling unknown xenobiotics, untargeted and LC-HRMS based metabolomics and background subtraction-based approaches are required. OBJECTIVE: This study aimed to evaluate the effectiveness of untargeted metabolomics and the precise and thorough background subtraction (PATBS) in GXP of rat plasma. METHODS: Rat plasma samples collected from an oral administration of nefazodone (NEF) or Glycyrrhizae Radix et Rhizoma (Gancao, GC) were analyzed by LC-HRMS. NEF metabolites and GC components in rat plasma were thoroughly searched and characterized via processing LC-HRMS datasets using targeted and untargeted methods. RESULTS: PATBS detected 68 NEF metabolites and 63 GC components, while the metabolomic approach (MS-DIAL) found 67 NEF metabolites and 60 GC components in rat plasma. The two methods found 79 NEF metabolites and 80 GC components with 96% and 91% successful rates, respectively. CONCLUSION: Metabolomics methods are capable of GXP and measuring alternations of endogenous metabolites in a group of biological samples, while PATBS is more suited for sensitive GXP of a single biological sample. A combination of metabolomics and PATBS approaches can generate better results in the untargeted profiling of unknown xenobiotics.


Subject(s)
Metabolomics , Xenobiotics , Rats , Animals , Metabolomics/methods , Mass Spectrometry/methods , Chromatography, Liquid/methods , Administration, Oral
13.
Pharmaceutics ; 14(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36559118

ABSTRACT

For the delivery of anticancer drugs, an injectable in situ hydrogel with thermal responsiveness and prolonged drug release capabilities shows considerable potential. Here, we present a series of thermosensitive in situ hydrogels that serve as drug delivery systems for the treatment of liver cancer. These hydrogels were created by utilizing the polydimethylsiloxane (PDMS) oligomer, polyethylene glycol (PEG) and polypropylene glycol (PPG)'s chemical cross-linking capabilities. Doxorubicin (DOX) was encapsulated in a hydrogel with a hydrophobic core and hydrophilic shell to enhance DOX solubility. Studies into the behavior of in situ produced hydrogels at the microscopic and macroscopic levels revealed that the copolymer solution exhibits a progressive shift from sol to gel as the temperature rises. The hydrogels' chemical composition, thermal properties, rheological characteristics, gelation period, and DOX release behavior were all reported. Subcutaneous injection in mice was used to confirm the injectability. Through the in vitro release of DOX in a PBS solution that mimics the tumor microenvironment, the hydrogel's sustained drug release behavior was confirmed. Additionally, using human hepatocellular hepatoma, the anticancer efficacy of thermogel (DEP-2@DOX) was assessed (HepG2). The carrier polymer material DEP-2 was tested for cytotoxicity using HepG2 cells and its excellent cytocompatibility was confirmed. In conclusion, these thermally responsive injectable hydrogels are prominent potential candidates as drug delivery vehicles for the treatment of hepatocellular carcinoma.

14.
Nat Commun ; 13(1): 5985, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36216956

ABSTRACT

Cholesterol-enhanced pore formation is one evolutionary means cholesterol-free bacterial cells utilize to specifically target cholesterol-rich eukaryotic cells, thus escaping the toxicity these membrane-lytic pores might have brought onto themselves. Here, we present a class of artificial cholesterol-dependent nanopores, manifesting nanopore formation sensitivity, up-regulated by cholesterol of up to 50 mol% (relative to the lipid molecules). The high modularity in the amphiphilic molecular backbone enables a facile tuning of pore size and consequently channel activity. Possessing a nano-sized cavity of ~ 1.6 nm in diameter, our most active channel Ch-C1 can transport nanometer-sized molecules as large as 5(6)-carboxyfluorescein and display potent anticancer activity (IC50 = 3.8 µM) toward human hepatocellular carcinomas, with high selectivity index values of 12.5 and >130 against normal human liver and kidney cells, respectively.


Subject(s)
Nanopores , Humans , Lipids , Membranes
15.
Front Pharmacol ; 13: 926890, 2022.
Article in English | MEDLINE | ID: mdl-36071838

ABSTRACT

Background: Epidermal growth factor receptor (EGFR) mutations are common in patients with non-small-cell lung cancer (NSCLC), particularly in Asian populations. Tyrosine kinase inhibitors (TKIs) are a first-line treatment in patients with mutant EGFR, but their use is often accompanied by drug resistance, which leads to disease progression. Chemotherapy and immunotherapy are the main treatment options after progression. The efficacy of immune checkpoint inhibitors (ICIs) and their combination therapy in patients with EGFR-TKI resistant is not clear. It is thus necessary to evaluate the efficacy of ICIs and ICI-based combination therapies in patients with EGFR-TKI-resistant NSCLC. Methods: We searched for randomized controlled trials (RCTs) comparing ICI therapy alone or in combination versus other therapies using PubMed, the Cochrane Library, Web of Science, EMBASE, MEDLINE, ClinicalTrials.gov, and several international conference databases, from database inception to 10 March 2022. The hazard ratio (HR) and 95% confidence interval (95% CI) for median overall survival (OS) and median progression-free survival (PFS) were evaluated. Odds ratio (OR), risk ratio (RR), and 95% CI were used as effect indicators for objective response rate (ORR) and safety data. Results: Seven eligible RCTs were included in the present meta-analysis. The results showed that neither ICIs nor combination therapy prolonged median OS in EGFR-TKI resistant NSCLC patients (HR = 1.04, 95% CI: 0.84-1.29, p = 0.73). However, compared with the control group, the patients treated with ICI-based combination therapy had better PFS (HR = 0.62, 95% CI: 0.45-0.86, p = 0.004) and ORR (OR = 1.84, 95% CI: 1.28-2.66, p = 0.001). Conclusion: ICI monotherapy did not improve the OS or PFS of NSCLC patients previously treated with EGFR-TKIs, whereas patients treated with ICI-based combination therapy had better PFS compared with those receiving conventional chemotherapy, indicating that this therapy could be offered to patients with EGFR-mutant NSCLC after progression following TKI treatment. There was no significant difference in all-grade treatment-related adverse events (TRAEs) between the combination therapy group and the control group. However, a higher incidence of discontinuation due to TRAEs was observed; this requires attention in future studies. The results of this meta-analysis provide a reference for clinical practice and future trial design. PROSPERO registration number: CRD42021282207.

16.
Nanoscale Adv ; 4(17): 3462-3478, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36134346

ABSTRACT

Mechanical force responsive drug delivery systems (in terms of mechanical force induced chemical bond breakage or physical structure destabilization) have been recently explored to exhibit a controllable pharmaceutical release behaviour at a molecular level. In comparison with chemical or biological stimulus triggers, mechanical force is not only an external but also an internal stimulus which is closely related to the physiological status of patients. However, although this mechanical force stimulus might be one of the most promising and feasible sources to achieve on-demand pharmaceutical release, current research in this field is still limited. Hence, this tutorial review aims to comprehensively evaluate the recent advances in mechanical force-responsive drug delivery systems based on different types of mechanical force, in terms of direct stimulation by compressive, tensile, and shear force, or indirect/remote stimulation by ultrasound and a magnetic field. Furthermore, the exciting developments and current challenges in this field will also be discussed to provide a blueprint for potential clinical translational research of mechanical force-responsive drug delivery systems.

17.
Front Bioeng Biotechnol ; 10: 912562, 2022.
Article in English | MEDLINE | ID: mdl-36032710

ABSTRACT

Myocardial infarction (MI) is a serious threat to people's life and health, which is significantly hindered by effective treatment formulations. Interestingly, our recent endeavour of designing selenium-containing polymeric hydrogel has been experimentally proved to be helpful in combating inflammatory responses and treating MI. The design was inspired by selenium with anti-inflammatory and anti-fibrosis activities, and the formulation could also serve as a support of myocardial tissue upon the failure of this function. In details, an injectable selenium-containing polymeric hydrogel, namely, poly[di-(1-hydroxylyndecyl) selenide/polypropylene glycol/polyethylene glycol urethane] [poly(DH-SE/PEG/PPG urethane)], was synthesised by combining a thermosensitive PPG block, DH-Se (which has oxidation-reduction properties), and hydrophilic PEG segments. Based on the established mouse model of MI, this formulation was experimentally validated to effectively promote the recovery of cardiac function. At the same time, we confirmed by enzyme-linked immunosorbent assay, Masson staining and Western blotting that this formulation could inhibit inflammation and fibrosis, so as to significantly improve left ventricular remodelling. In summary, a selenium-containing polymeric hydrogel formulation analysed in the current study could be a promising therapeutic formulation, which can provide new strategies towards the effective treatment of myocardial infarction or even other inflammatory diseases.

18.
J Ethnopharmacol ; 298: 115648, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35987408

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Saussurea involucrata Kar.et Kir. (S.I.) has long been used as a precious national medicine and clinically proven to be an effective treatment for rheumatoid arthritis (RA) and cardiovascular diseases. In clinical practice, two extraction methods of S.I., including water decoction and alcohol extraction, are prescribed to treat the same conditions. Nevertheless, no study has been performed on the exposure differences of the pharmacodynamic material basis in vivo caused by different extraction methods. AIM OF THE STUDY: Based on the integrated strategy of metabolism, network pharmacology, and pharmacokinetics, we aimed to reveal exposure differences in pharmacodynamic substances caused by different extraction methods. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS) was employed to identify the chemical constituents of S.I. extracts and the metabolites in vivo after administration. Based on the analysis of prototype components in vivo, the major exposure active constituents, potential therapeutic targets and possible pharmacological mechanisms in RA treatment were investigated using network pharmacological analysis. Seven critical active components, including quercetin, hispidulin, apigenin, chlorogenic acid, arctigenin, syringin, and umbelliferone, were quantitatively compared between the alcohol, and aqueous extraction methods, which had been confirmed by the reference substance. RESULTS: The chemical comparison demonstrated that the types of chemicals in the two extracts were identical, mainly flavonoids, phenylpropanoids, coumarins, lignins, sesquiterpene lactones, and others, but the contents of the primary constituents in the aqueous extract were lower than those of the alcohol extract. A total of 30 prototype components and 174 metabolites were analyzed and identified in rat plasma, urine, fecal, and bile samples. Twenty-three prototype components were analyzed by network pharmacology, and seven critical active components were selected as representative markers for the pharmacokinetic study. Pharmacokinetic studies had shown that the Tmax values of apigenin, hispidulin, chlorogenic acid, arctigenin, and syringin after the oral administration of the alcohol extract were lower than those after the oral administration of the aqueous extract, and the above components in the alcohol extract could increase the absorption. Compared with the aqueous extract group, the Tmax and T1/2 of quercetin and umbelliferone were longer; it was suggested that alcohol extraction might have a slow-release and long-term effect on these two components. The relative bioavailability of apigenin, hispidulin, quercetin, chlorogenic acid, and umbelliferone in the alcohol extract group were higher than those in the aqueous extract group, which was consistent with the traditional clinical experience that alcohol extract could improve the efficacy of S.I. CONCLUSIONS: The major exposure active constituents in vivo were screened. The representative components that could be used in pharmacokinetics were determined by integrating network pharmacology and metabolism studies. The critical active compounds were quantitatively compared between the alcohol and aqueous extraction methods. This study clarified that flavonoids, coumarin, and phenylpropanoids might be the primary material basis that caused the exposure differences between aqueous and alcoholic extracts from S.I.. This research aimed to provide the basis of metabolism in vivo for further studying these pharmacodynamic differences.


Subject(s)
Drugs, Chinese Herbal , Saussurea , Animals , Apigenin , Chlorogenic Acid , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacology , Flavonoids , Network Pharmacology , Plant Extracts/therapeutic use , Quercetin , Rats , Saussurea/chemistry , Umbelliferones
19.
Gels ; 8(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35877508

ABSTRACT

Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.

SELECTION OF CITATIONS
SEARCH DETAIL