Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(2): 1025-1037, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38447060

ABSTRACT

Global climate change is accompanied by carbon dioxide (CO2) enrichment and high temperature (HT) stress; however, how plants adapt to the combined environments and the underlying mechanisms remain largely unclear. In this study, we show that elevated CO2 alleviated plant sensitivity to HT stress, with significantly increased apoplastic glucose (Glc) levels in tomato (Solanum lycopersicum) leaves. Exogenous Glc treatment enhanced tomato resilience to HT stress under ambient CO2 conditions. Cell-based biolayer interferometry, subcellular localization, and Split-luciferase assays revealed that Glc bound to the tomato regulator of G protein signaling 1 (RGS1) and induced RGS1 endocytosis and thereby RGS1-G protein α subunit (GPA1) dissociation in a concentration-dependent manner. Using rgs1 and gpa1 mutants, we found that RGS1 negatively regulated thermotolerance and was required for elevated CO2-Glc-induced thermotolerance. GPA1 positively regulated the elevated CO2-Glc-induced thermotolerance. A combined transcriptome and chlorophyll fluorescence parameter analysis further revealed that GPA1 integrated photosynthesis- and photoprotection-related mechanisms to regulate thermotolerance. These results demonstrate that Glc-RGS1-GPA1 signaling plays a crucial role in the elevated CO2-induced thermotolerance in tomato. This information enhances our understanding of the Glc-G protein signaling function in stress resilience in response to global climate change and will be helpful for genetic engineering approaches to improve plant resilience.


Subject(s)
Carbon Dioxide , Glucose , Signal Transduction , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/metabolism , Carbon Dioxide/metabolism , Glucose/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Hot Temperature , Gene Expression Regulation, Plant , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/physiology , RGS Proteins/metabolism , RGS Proteins/genetics , Thermotolerance/physiology
2.
Plant Physiol ; 194(4): 2739-2754, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38214105

ABSTRACT

Phytosulfokine (PSK), a plant peptide hormone with a wide range of biological functions, is recognized by its receptor PHYTOSULFOKINE RECEPTOR 1 (PSKR1). Previous studies have reported that PSK plays important roles in plant growth, development, and stress responses. However, the involvement of PSK in fruit development and quality formation remains largely unknown. Here, using tomato (Solanum lycopersicum) as a research model, we show that exogenous application of PSK promotes the initiation of fruit ripening and quality formation, while these processes are delayed in pskr1 mutant fruits. Transcriptomic profiling revealed that molecular events and metabolic pathways associated with fruit ripening and quality formation are affected in pskr1 mutant lines and transcription factors are involved in PSKR1-mediated ripening. Yeast screening further identified that DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2F (DREB2F) interacts with PSKR1. Silencing of DREB2F delayed the initiation of fruit ripening and inhibited the promoting effect of PSK on fruit ripening. Moreover, the interaction between PSKR1 and DREB2F led to phosphorylation of DREB2F. PSK improved the efficiency of DREB2F phosphorylation by PSKR1 at the tyrosine-30 site, and the phosphorylation of this site increased the transcription level of potential target genes related to the ripening process and functioned in promoting fruit ripening and quality formation. These findings shed light on the involvement of PSK and its downstream signaling molecule DREB2F in controlling climacteric fruit ripening, offering insights into the regulatory mechanisms governing ripening processes in fleshy fruits.


Subject(s)
Peptide Hormones , Solanum lycopersicum , Solanum lycopersicum/genetics , Plant Proteins/metabolism , Fruit/metabolism , Phosphorylation , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Peptide Hormones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism
3.
Hortic Res ; 10(10): uhad173, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37841503

ABSTRACT

The impact of low light intensities on plant disease outbreaks represents a major challenge for global crop security, as it frequently results in significant yield losses. However, the underlying mechanisms of the effect of low light on plant defense are still poorly understood. Here, using an RNA-seq approach, we found that the susceptibility of tomato to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) under low light was associated with the oxidation-reduction process. Low light conditions exacerbated Pst DC3000-induced reactive oxygen species (ROS) accumulation and protein oxidation. Analysis of gene expression and enzyme activity of ascorbate peroxidase 2 (APX2) and other antioxidant enzymes revealed that these defense responses were significantly induced by Pst DC3000 inoculation under normal light, whereas these genes and their associated enzyme activities were not responsive to pathogen inoculation under low light. Additionally, the reduced ascorbate to dehydroascorbate (AsA/DHA) ratio was lower under low light compared with normal light conditions upon Pst DC3000 inoculation. Furthermore, the apx2 mutants generated by a CRISPR-Cas9 gene-editing approach were more susceptible to Pst DC3000 under low light conditions. Notably, this increased susceptibility could be significantly reduced by exogenous AsA treatment. Collectively, our findings suggest that low-light-induced disease susceptibility is associated with increased cellular oxidative stress in tomato plants. This study sheds light on the intricate relationship between light conditions, oxidative stress, and plant defense responses, and may pave the way for improved crop protection strategies in low light environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...