Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Opt Express ; 32(12): 21616-21628, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859511

ABSTRACT

Exceptional points (EPs) in non-Hermitian systems have turned out to be at the origin of many intriguing effects with no counterparts in Hermitian cases. A typically interesting behavior is the chiral mode switching by dynamically winding the EP. Most encircling protocols focus on the two-state or parity-time (PT) symmetry systems. Here, we propose and investigate the dynamical encircling of multiple EPs in an anti-PT-symmetric system, which is constructed based on a one-dimensional lattice with staggered lossy modulation. We reveal that dynamically encircling the multiple EPs results in the chiral dynamics via multiple non-Hermiticity-induced nonadiabatic transitions, where the output state is always on the lowest-loss energy sheet. Compared with the PT-symmetric systems that require complicated variation of the gain/loss rate or on-site potentials, our system only requires modulations of the couplings which can be readily realized in various experimental platforms. Our scheme provides a route to study non-Hermitian physics by engineering the EPs and implement novel photonic devices with unconventional functions.

2.
Nat Commun ; 15(1): 1798, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413597

ABSTRACT

Continuum Landau modes - predicted recently in a non-Hermitian Dirac Hamiltonian under a uniform magnetic field - are continuous bound states with no counterparts in Hermitian systems. However, they have still not been confirmed in experiments. Here, we report an experimental observation of continuum Landau modes in non-Hermitian electric circuits, in which the non-Hermitian Dirac Hamiltonian is simulated by non-reciprocal hoppings and the pseudomagnetic field is introduced by inhomogeneous complex on-site potentials. Through measuring the admittance spectrum and the eigenstates, we successfully verify key features of continuum Landau modes. Particularly, we observe the exotic voltage response acting as a rainbow trap or wave funnel through full-field excitation. This response originates from the linear relationship between the modes' center position and complex eigenvalues. Our work builds a bridge between non-Hermiticity and magnetic fields, and thus opens an avenue to explore exotic non-Hermitian physics.

3.
Cell Res ; 34(1): 31-46, 2024 01.
Article in English | MEDLINE | ID: mdl-38172533

ABSTRACT

Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Mice , Eukaryotic Initiation Factor-4F/metabolism , Protein Processing, Post-Translational , Gene Expression Regulation , Carrier Proteins/metabolism , Mammals
4.
Proc Natl Acad Sci U S A ; 120(14): e2216006120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972460

ABSTRACT

Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Intrinsically Disordered Proteins , MicroRNAs , Arabidopsis/genetics , Arabidopsis/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA Processing, Post-Transcriptional , MicroRNAs/metabolism , Ribonuclease III/metabolism , Gene Expression Regulation, Plant
5.
Opt Express ; 29(16): 25439-25448, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614875

ABSTRACT

Beam splitting of high-order Gaussian (HOG) beams increases the channel capacity and improves the processing speed of the incoming information. Here a novel all-optical tunable multi-port HOG beam splitter under a periodic dielectric atomic structure is proposed and demonstrated. The original HOG beam is replicated in the output beams. A distinguishable five-port output beam is observed in the experiment, which is beneficial for high-speed optical communications. By tuning the optical properties of this periodic dielectric structure, the spatial position and intensity distribution of each output port are precisely controllable. The splitting ratio δ can be finely adjusted in the range 0 - 4.8. This work provides a new approach for multi-port HOG beam splitters and the basis for all-optical communication.

6.
Opt Lett ; 46(17): 4184-4187, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469970

ABSTRACT

Optical vortex arrays (OVAs) containing multiple vortices have been in demand for multi-channel optical communications and multiple-particle trapping. In this Letter, an OVA with tunable intensity and spatial distribution was implemented all-optically in a two-dimensional (2D) electromagnetically induced atomic lattice (EIL). Such a square lattice is constructed by two orthogonal standing-wave fields in 85Rb vapor, resulting in the periodically modulated susceptibility of the probe beam based on electromagnetically induced transparency (EIT). An OVA with dark-hollow intensity distribution based on 2D EIL was observed in the experiment first. This work thus studied the nonlinear 2D EIL process both theoretically and experimentally, presenting, to the best of our knowledge, a novel method of dynamically obtaining and controlling an OVA and further promoting the construction of all-optical networks with atomic ensembles.

7.
Sci Rep ; 11(1): 15577, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34341457

ABSTRACT

Landslide dam outburst floods have a significant impact on landform evolution in high mountainous areas. Historic landslide dams on the Yigong River, southeastern Tibet, generated two outburst superfloods > 105 m3/s in 1902 and 2000 AD. One of the slackwater deposits, which was newly found immediately downstream of the historic dams, has been dated to 7 ka BP. The one-dimensional backwater stepwise method gives an estimate of 225,000 m3/s for the peak flow related to the paleo-stage indicator of 7 ka BP. The recurrence of at least three large landslide dam impoundments and super-outburst floods at the exit of Yigong Lake during the Holocene greatly changed the morphology of the Yigong River. More than 0.26 billion m3 of sediment has been aggraded in the dammed lake while the landslide sediment doubles the channel slope behind the dam. Repeated landslide damming may be a persistent source of outburst floods and impede the upstream migration of river knickpoints in the southeastern margin of Tibet.

8.
Opt Express ; 29(2): 2712-2719, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726462

ABSTRACT

All-optical devices used to process optical signals without electro-optical conversion plays a vital role in the next generation of optical information processing systems. We demonstrate an efficient all-optical modulator that utilizes a periodic dielectric atomic lattice produced in a gas of 85Rb vapor. Four orders of diffraction patterns are observed when a probe laser is passed through the lattice. The frequency shift of the peak of each diffraction order can be tuned by adjusting the control laser power and two-photon detuning, enabling this device to be used as a multi-channel all-optical modulator. Both theoretical simulations and experimental results demonstrate that this modulator can operate over a frequency band extending from about 0 to 60 MHz. This work may pave the way for studying quantum information processing and quantum networking proposed in atomic ensembles.

9.
Opt Express ; 28(16): 23820-23828, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752373

ABSTRACT

A novel tunable all-optical grating is realized experimentally in a V+Ξ configuration coherent rubidium thermal vapor. This new energy level structure employs a Rydberg level as the uppermost level and contains two typical electromagnetically induced transparency energy level configurations with the same probe field. Compared with the traditional V-type three-level grating, a significant improvement of the diffraction efficiency of this novel grating was observed. Its improvement was then also demonstrated experimentally by the transition spectrum and theoretically by a comprehensive simulation. The diffraction efficiency gain introduced by the control laser field was tuned with several experimental parameters, such as the atomic density and the control field intensity. And the maximum enhancement rate of first-order diffraction efficiency is proved to be as high as 30%. Such a novel all-optical tunable grating promises to be the new driving force in the advancement of all-optical communications and information technology.

10.
Opt Express ; 27(20): 28133-28142, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684571

ABSTRACT

Optically induced symmetry-breaking plays a key role in nonlinear photonics. Recently, the experiment has successfully observed the Kerr-nonlinearity-induced chiral symmetry breaking in a single ultrahigh-Q whispering-gallery microresonator. Here, we show this symmetry-breaking can generate exotic dynamics between two counter-propagating modes. In particular, we predict two kinds of self-trappings, in which the corresponding relative phase oscillates around π or runs without bound although they have both the nonzero mean energy imbalance. Finally, we also clarify the impacts of the mode loss, finding a dynamical transition from self-trappings to an anharmonic oscillation. The presented scheme offers a new route to understanding the nonlinear dynamics and wave chaos in the microresonator.

11.
Toxicol Res (Camb) ; 8(5): 613-620, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31588339

ABSTRACT

Phytochemicals as typical food components may significantly influence the toxicity of nanoparticles (NPs) in intestinal cells, indicating a need to evaluate the toxicological effects of NPs in a complex situation. Previous studies suggested that the anti-oxidative properties of phytochemicals were important to elicit cytoprotective effects against NP exposure. However, we recently found that the changes of signaling pathways may be more important for cytoprotective effects of phytochemicals. In this study, we investigated the influence of myricetin (MY) on the cytotoxicity of ZnO NPs in Caco-2 cells and the possible mechanism. MY at 50 µM showed minimal impact on the solubility and colloidal aspects of ZnO NPs, but protected Caco-2 cells from NP exposure as it increased the EC50 value. For comparison, dihydromyricetin (DMY; chemical analog of MY) increased the EC50 value to a much lesser extent. Exposure to ZnO NPs significantly induced intracellular Zn ions, whereas MY or DMY did not significantly influence the internalization of NPs. However, ZnO NPs significantly promoted the ratio of caspase-3/pro-caspase-3, which was inhibited by the presence of MY. Exposure to ZnO NPs did not significantly promote the biomarkers of endoplasmic reticulum (ER) stress, but co-exposure to ZnO NPs and MY significantly lowered the levels of a panel of ER stress biomarkers. In conclusion, these results suggested that MY could protect Caco-2 cells from ZnO NP exposure, which may not be related to the changes of colloidal stability or internalization of NPs but could be alternatively related to the reduction of ER stress leading to lower cleaved caspase-3.

12.
Opt Lett ; 44(17): 4123-4126, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465344

ABSTRACT

The diffraction pattern of a two-dimensional optically induced atomic lattice is reported experimentally in a three-level atomic system. Such a two-dimensional optical lattice is established by two orthogonal standing-wave fields induced by the interference of two pairs of coupling laser beams. When the probe beam is launched into it, a spatially modulated discrete diffraction pattern can be obtained at the output plane of the vapor cell under the electromagnetically induced transparency condition. We investigate the diffraction pattern under different experimental parameters and find that it can be effectively controlled by tuning the coupling laser power and two-photon detuning. Our work may potentially pave the way for studying the control of light and other intriguing physical phenomena based on such a periodically modulated atomic lattice.

13.
Opt Express ; 27(1): 92-101, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30645361

ABSTRACT

Both integer and fractional electromagnetically induced Talbot effects are experimentally investigated in a coherent rubidium 5S1/2 - 5P3/2 - 5D5/2 ladder-type system. By launching a probe laser into a periodically modulated lattice constructed by two crossed coupling fields with a small angle inside the rubidium vapor, a high-resolution diffraction pattern is obtained. The diffraction pattern is reproduced completely at detection positions of an integer multiple of twice the Talbot lengths. Meanwhile, the fractional Talbot effect, presented as complicated subimages at special positions, is also clearly observed. Furthermore, the theoretical simulations are conducted and agree well with the experimental results. These results pave the way for studying the control of light dynamics based on the periodically modulated medium.

14.
Biometals ; 31(4): 457-476, 2018 08.
Article in English | MEDLINE | ID: mdl-29748744

ABSTRACT

To ensure the safe use of nanoparticles (NPs) in modern society, it is necessary and urgent to assess the potential toxicity of NPs. Cardiovascular system is required for the systemic distribution of NPs entering circulation. Therefore, the adverse cardiovascular effects of NPs have gained extensive research interests. Metal based NPs, such as TiO2, ZnO and Ag NPs, are among the most popular NPs found in commercially available products. They may also have potential applications in biomedicine, which could increase their contact with cardiovascular systems. This review aimed at providing an overview about the adverse cardiovascular effects of TiO2, ZnO and Ag NPs. We discussed about the bio-distribution of NPs following different exposure routes. We also discussed about the cardiovascular toxicity of TiO2, ZnO and Ag NPs as assessed by in vivo and in vitro models. The possible mechanisms and contribution of physicochemical properties of metal based NPs were also discussed.


Subject(s)
Cardiovascular System/drug effects , Nanoparticles/toxicity , Titanium/toxicity , Zinc Oxide/toxicity , Cardiotoxicity/epidemiology , Cardiovascular System/physiopathology , Humans , Nanoparticles/therapeutic use , Oxidative Stress/drug effects , Reactive Oxygen Species/chemistry , Silver/therapeutic use , Silver/toxicity , Titanium/therapeutic use , Zinc Oxide/therapeutic use
15.
J Appl Toxicol ; 38(9): 1206-1214, 2018 09.
Article in English | MEDLINE | ID: mdl-29691881

ABSTRACT

It is recently shown that flavonoids might reduce the toxicity of nanoparticles (NPs) due to their antioxidative properties. In this study, the influence of 3-hydroxyflavone (H3) on the toxicity of ZnO NPs was investigated. H3 increased hydrodynamic size, polydispersity index and absolute value of the zeta potential of ZnO NPs, which indicated that H3 could influence the colloidal aspects of NPs. Surprisingly, H3 markedly decreased the initial concentration of ZnO NPs required to induce cytotoxicity to Caco-2, HepG2, THP-1 and human umbilical vein endothelial cells, which suggested that H3 could promote the toxicity of ZnO NPs to both cancerous and normal cells. For comparison, 6-hydroxyflavone did not show this effect. H3 remarkably increased cellular Zn elements and intracellular Zn ions in HepG2 cells following ZnO NP exposure, and co-exposure to H3 and NPs induced a relatively higher intracellular reactive oxygen species. Exposure to ZnO NPs at 3 hours induced the expression of endoplasmic reticulum stress markers DDIT3 and XBP-1 s, which was suppressed by H3. The expression of apoptotic genes BAX and CASP3 was significantly induced by ZnO NP exposure after 3 and 5 hours, respectively, and H3 further significantly promoted CASP3 expression at 5 hours. In combination, the results from this study suggested that H3 affected colloidal stability of ZnO NPs, promoted the interactions between NPs and cells, and altered the NP-induced endoplasmic reticulum stress-apoptosis signaling pathway, which finally enhanced the cytotoxicity of ZnO NPs.


Subject(s)
Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Flavonoids/toxicity , Hepatocytes/drug effects , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Zinc Oxide/toxicity , Caco-2 Cells , Caspase 3/genetics , Caspase 3/metabolism , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , THP-1 Cells , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
16.
IEEE Trans Neural Netw Learn Syst ; 28(4): 862-872, 2017 04.
Article in English | MEDLINE | ID: mdl-27875232

ABSTRACT

Recent years have witnessed brain-computer interface (BCI) as a promising technology for integrating human intelligence and machine intelligence. Currently, event-related potential (ERP)-based BCI is an important branch of noninvasive electroencephalogram (EEG)-based BCIs. Extracting ERPs from a limited number of trials remains challenging due to their low signal-to-noise ratio (SNR) and low spatial resolution caused by volume conduction. In this paper, we propose a probabilistic model for trial-by-trial concatenated EEG, in which the concatenated ERPs are expressed as a linear combination of a set of discrete sine and cosine bases. The bases are simply determined by the data length of a single trial. A sparse prior on the rank of the spatio-spectral pattern matrix is introduced into the model to allow the number of components to be automatically determined. A maximum posterior estimation algorithm based on cyclic descent is then developed to estimate the spatiospectral patterns. A spatial filter can then be obtained by maximizing the SNR of the ERP components. Experiments on both synthetic data and real N170 ERP from 13 subjects were conducted to test the efficacy and efficiency of the algorithm. The results showed that the proposed algorithm can estimate the ERPs more accurately than the several state-of-the-art algorithms.

17.
PLoS One ; 11(9): e0163897, 2016.
Article in English | MEDLINE | ID: mdl-27684956

ABSTRACT

The SNARC effect refers to an association of numbers and spatial properties of responses that is commonly thought to be amodal and independent of stimulus notation. We tested for a horizontal SNARC effect using Arabic digits, simple-form Chinese characters and Chinese hand signs in participants from Mainland China. We found a horizontal SNARC effect in all notations. This is the first time that a horizontal SNARC effect has been demonstrated in Chinese characters and Chinese hand signs. We tested for the SNARC effect in two experiments (parity judgement and magnitude judgement). The parity judgement task yielded clear, consistent SNARC effects in all notations, whereas results were more mixed in magnitude judgement. Both Chinese characters and Chinese hand signs are represented non-symbolically for low numbers and symbolically for higher numbers, allowing us to contrast within the same notation the effects of heavily learned non-symbolic vs. symbolic representation on the processing of numbers. In addition to finding a horizontal SNARC effect, we also found a robust numerical distance effect in all notations. This is particularly interesting as it persisted when participants reported using purely visual features to solve the task, thereby suggesting that numbers were processed semantically even when the task could be solved without the semantic information.

18.
Zhong Yao Cai ; 39(1): 138-42, 2016 Jan.
Article in Chinese | MEDLINE | ID: mdl-30080016

ABSTRACT

Objective: To optimize the polymer material and process condition for preparation of tanshinone Ⅱ_A microspheres by orthogonal design. Methods: The microspheres were prepared by emulsion solvent evaporation method. The optimum polymer material and preparation process were clarified by the comprehensive weighted score which was evaluated with the drug loading, encapsulation efficiency, and yield. The quality characterization of the tanshinone Ⅱ_A microspheres were assayed by SEM, laser particle size analyzer, TGDSC,and XRD. Results: The drug loading and encapsulation rate of microspheres prepared by PLLA was significantly higher than that of other polymer material. The surface of TA-PLLA-MS was round with porous structure, average particle size was( 96. 95 ± 1. 7) µm, the drug loading was( 30. 43 ± 0. 04) %,the entrapment efficiency was( 82. 72 ± 1. 51) %,and the yield was( 94. 10 ± 1. 60) %. The drug crystal form was still in the microspheres from the results of TG-DSC and XRD. Conclusion: The PLLA tanshinone Ⅱ_A microspheres were prepared by emulsion solvent evaporation method which was simple,stable,and enough loaded drug.


Subject(s)
Microspheres , Abietanes , Emulsions , Lactic Acid , Particle Size , Solvents
19.
Neuroimage ; 88: 319-39, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24333395

ABSTRACT

Extraction and separation of functionally different event-related potentials (ERPs) from electroencephalography (EEG) is a long-standing problem in cognitive neuroscience. In this paper, we propose a Bayesian spatio-temporal model for estimating ERP components from multichannel EEG recorded under multiple experimental conditions. The model isolates the spatially and temporally overlapping ERP components by utilizing their phase-locking structure and the inter-condition non-stationarity structure of their amplitudes and latencies. Critically, unlike in previous multilinear algorithms, the non-phase-locked background EEGs are modeled as spatially correlated and non-isotropic signals. A variational algorithm was developed for approximate Bayesian inference of the proposed model, with the effective number of ERP components automatically determined as a part of the algorithm. The utility of the algorithm is demonstrated with applications to synthetic data and the EEG data collected from 13 subjects during a face inversion experiment. The results show that our algorithm more accurately and reliably estimates the spatio-temporal patterns, amplitudes, and latencies of the underlying ERP components in comparison with several state-of-the-art algorithms.


Subject(s)
Brain/physiology , Electroencephalography , Evoked Potentials , Adult , Algorithms , Bayes Theorem , Data Interpretation, Statistical , Female , Humans , Male , Young Adult
20.
J Neural Eng ; 10(2): 026015, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23448978

ABSTRACT

OBJECTIVE: It is currently a challenge to extract the mismatch negativity (MMN) waveform on the basis of a small number of EEG trials, which are typically unbalanced between conditions. APPROACH: In order to address this issue, a method combining the techniques of resampling and spatial filtering is proposed in this paper. Specifically, the first step of the method, termed 'resampling difference', randomly samples the standard and deviant sweeps, and then subtracts standard sweeps from deviant sweeps. The second step of the method employs the spatial filters designed by a signal-to-noise ratio maximizer (SIM) to extract the MMN component. The SIM algorithm can maximize the signal-to-noise ratio for event-related potentials (ERPs) to improve extraction. Simulation data were used to evaluate the influence of three parameters (i.e. trial number, repeated-SIM times and sampling times) on the performance of the proposed method. MAIN RESULTS: Results demonstrated that it was feasible and reliable to extract the MMN waveform using the method. Finally, an oddball paradigm with auditory stimuli of different frequencies was employed to record a few trials (50 trials of deviant sweeps and 250 trials of standard sweeps) of EEG data from 11 adult subjects. Results showed that the method could effectively extract the MMN using the EEG data of each individual subject. SIGNIFICANCE: The extracted MMN waveform has a significantly larger peak amplitude and shorter latencies in response to the more deviant stimuli than in response to the less deviant stimuli, which agreed with the MMN properties reported in previous literature using grand-averaged EEG data of multi-subjects.


Subject(s)
Electroencephalography , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Adult , Algorithms , Analysis of Variance , Computer Simulation , Data Interpretation, Statistical , Equipment Design , Female , Humans , Linear Models , Male , Pitch Discrimination , Psychophysics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL