Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(7): 071801, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656856

ABSTRACT

Searching for exotic interactions provides a path for exploring new particles beyond the standard model. Here, we used an ensemble-NV-diamond magnetometer to search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale. A thin layer of nitrogen-vacancy electronic spin ensemble in diamond is utilized as both the solid-state spin quantum sensor and the polarized electron source, and a vibrating lead sphere serves as the moving unpolarized nucleon source. The exotic interaction is searched by detecting the possible effective magnetic field induced by the moving unpolarized nucleon source using the ensemble-NV-diamond magnetometer. Our result establishes new bounds for the coupling parameter f_{⊥} within the force range from 5 to 400 µm. The upper limit of the coupling parameter at 100 µm is |f_{⊥}|≤1.1×10^{-11}, which is 3 orders of magnitude more stringent than the previous constraint. This result shows that NV ensemble can be a promising platform to search for hypothetical particles beyond the standard model.

2.
Rev Sci Instrum ; 92(5): 055001, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243241

ABSTRACT

The key component of the scanning magnetometry based on nitrogen-vacancy centers is the diamond probe. Here, we designed and fabricated a new type of probe with an array of pillars on a (100 µm)2 × 50 µm diamond chip. The probe features high yield, convertibility to be a single pillar, and expedient reusability. Our fabrication is dramatically simplified by using ultraviolet laser cutting to shape the chip from a diamond substrate instead of additional lithography and time-consuming reactive ion etching. As an example, we demonstrate the imaging of a single magnetic skyrmion with nanoscale resolution. In the future, this flexible probe will be particularly well-suited for commercial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...