Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
J Colloid Interface Sci ; 676: 261-271, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39029252

ABSTRACT

Multifunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are crucial for development of the key electrochemical energy storage and conversion devices, for which single-atom catalyst (SAC) has present great promises. Very recently, some experimental works showed that structurally well-defined ultra-small transition-metal clusters (such as Fe and Co tetramers, denoted as Fe4 and Co4, respectively), can efficiently modulate the catalytic behavior of SACs by axial coordination. Herein, taking the graphene-supported MN4 SACs as representatives, we theoretically explored the feasibility of realizing multifunctional SACs for ORR, OER and HER by this novel axial coordination engineering. Through extensive first-principles calculations, from 23 candidates, IrN4 decorated with Fe4 (IrN4/Fe4) is identified as the promising trifunctional catalyst with the theoretical overpotential of 0.43, 0.51 and 0.30 V for OER, ORR and HER, respectively. RhN4/Fe4 and CoN4/Fe4 are recognized as potential OER and ORR bifunctional catalysts. In addition, NiN4/Fe4 exhibits the best ORR activity with an overpotential of 0.30 V, far superior to the pristine NiN4 SAC (0.88 V). Electronic structure analyses reveal that the significantly enhanced ORR/OER activity can be ascribed to the orbital and charge redistribution of Ni/Ir active center, resulting from its electronic interaction with Fe4 cluster. This work could stimulate and guide the rational design of graphene-based multifunctional SACs realized by axial coordination of small TM clusters, and provide insights into the modulation mechanism.

2.
Drug Deliv ; 31(1): 2372269, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38956885

ABSTRACT

Acne is a common chronic inflammatory disorder of the sebaceous gland in the hair follicle. Commonly used external medications cause skin irritation, and the transdermal capacity is weak, making it difficult to penetrate the cuticle skin barrier. Hair follicles can aid in the breakdown of this barrier. As nanomaterials progress, polymer-based nanocarriers are routinely used for hair follicle drug delivery to treat acne and other skin issues. Based on the physiological and anatomical characteristics of hair follicles, this paper discusses factors affecting hair follicle delivery by polymer nanocarriers, summarizes the common combination technology to improve the targeting of hair follicles by carriers, and finally reviews the most recent research progress of different polymer nanodrug-delivery systems for the treatment of acne by targeting hair follicles.


Subject(s)
Acne Vulgaris , Drug Carriers , Hair Follicle , Polymers , Hair Follicle/drug effects , Hair Follicle/metabolism , Acne Vulgaris/drug therapy , Humans , Polymers/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles , Administration, Cutaneous , Animals , Nanoparticle Drug Delivery System/chemistry
3.
Nano Lett ; 24(28): 8502-8509, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949570

ABSTRACT

N2O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N2O has gained increasing attention to remove N2O, but its product is worthless N2. Here, we propose a direct eight-electron (8e) pathway to electrochemically convert N2O into NH3. As a proof of concept, using density functional theory calculation, an Fe2 double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe2@NG) was screened out to be the most active and selective catalyst for N2O electroreduction toward NH3 via the novel 8e pathway, which benefits from the unique bent N2O adsorption configuration. Guided by theoretical prediction, Fe2@NG DAC was fabricated experimentally, and it can achieve a high N2O-to-NH3 Faradaic efficiency of 77.8% with a large NH3 yield rate of 2.9 mg h-1 cm-2 at -0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH3 from pollutant N2O with simultaneous N2O removal.

4.
Ecol Evol ; 14(5): e11214, 2024 May.
Article in English | MEDLINE | ID: mdl-38725828

ABSTRACT

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

5.
J Environ Manage ; 359: 120973, 2024 May.
Article in English | MEDLINE | ID: mdl-38703644

ABSTRACT

Chemical oxidation processes are widely used for the remediation of organically contaminated soils, but their potential impact on variable-valence and toxic metals such as chromium (Cr) is often overlooked. In this study, we investigated the risk of Cr(Ⅲ) oxidation in soils during the remediation of 2-chlorophenol (2-CP) contaminated soils using four different processes: Potassium permanganate (KMnO4), Modified Fenton (Fe2+/H2O2), Alkali-activated persulfate (S2O82-/OH-), and Fe2+-activated persulfate (S2O82-/Fe2+). Our results indicated that the KMnO4, Fe2+/H2O2, and S2O82-/Fe2+ processes progressively oxidized Cr(III) to Cr(Ⅵ) during the 2-CP degradation. The KMnO4 process likely involved direct electron transfer, while the Fe2+/H2O2 and S2O82-/Fe2+ processes primarily relied on HO• and/or SO4•- for the Cr(III) oxidation. Notably, after 4 h of 2-CP degradation, the Cr(VI) content in the KMnO4 process surpassed China's 3.0 mg kg-1 risk screening threshold for Class I construction sites, and further exceeded the 5.7 mg kg-1 limit for Class II construction sites after 8 h. Conversely, the S2O82-/OH- process exhibited negligible oxidation of Cr(III), maintaining a low oxidation ratio of 0.13%, as highly alkaline conditions induced Cr(III) precipitation, reducing its exposure to free radicals. Cr(III) oxidation ratio was directly proportional to oxidant dosage, whereas the Fe2+/H2O2 process showed a different trend, influenced by the concentration of reductants. This study provides insights into the selection and optimization of chemical oxidation processes for soil remediation, emphasizing the imperative for thorough risk evaluation of Cr(III) oxidation before their application.


Subject(s)
Chlorophenols , Chromium , Environmental Restoration and Remediation , Oxidation-Reduction , Soil Pollutants , Soil , Chromium/chemistry , Soil Pollutants/chemistry , Chlorophenols/chemistry , Soil/chemistry , Hydrogen Peroxide/chemistry , Potassium Permanganate/chemistry
6.
Nanoscale ; 16(14): 7058-7067, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38445992

ABSTRACT

The electrocatalytic NO reduction reaction (NORR) emerges as an intriguing strategy to convert harmful NO into valuable NH3. Due to their unique intrinsic properties, graphene-based Fe single-atom catalysts (SACs) have gained considerable attention in electrocatalysis, while their potential for NORR and the underlying mechanism remain to be explored. Herein, using constant-potential density functional theory calculations, we systematically investigated the electrocatalytic NORR on the graphene-based Fe SACs. By changing the local coordination environment of Fe single atoms, 26 systems were constructed. Theoretical results show that, among these systems, the Fe SAC coordinated with four pyrrole N atoms and that co-coordinated with three pyridine N atoms and one O atom exhibit excellent NORR activity with low limiting potentials of -0.26 and -0.33 V, respectively, as well as have high selectivity toward NH3 by inhibiting the formation of byproducts, especially under applied potential. Furthermore, electronic structure analyses indicate that NO molecules can be effectively adsorbed and activated via the electron "donation-backdonation" mechanism. In particular, the d-band center of the Fe SACs was identified as an efficient catalytic activity descriptor for NORR. Our work could stimulate and guide the experimental exploration of graphene-based Fe SACs for efficient NORR toward NH3 under ambient conditions.

7.
Glob Chang Biol ; 30(2): e17210, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38407426

ABSTRACT

Highly weathered lowland (sub)tropical forests are widely recognized as nitrogen (N)-rich and phosphorus (P)-poor, and the input of N and P affects soil carbon (C) cycling and storage in these ecosystems. Microbial residual C (MRC) plays a crucial role in regulating soil organic C (SOC) stability in forest soils. However, the effects of long-term N and P addition on soil MRC across different soil layers remain unclear. This study conducted a 12-year N and P addition experiment in two typical subtropical plantation forests dominated by Acacia auriculiformis and Eucalyptus urophylla trees, respectively. We measured plant C input (fine root biomass, fine root C, and litter C), microbial community structure, enzyme activity (C/N/P-cycling enzymes), mineral properties, and MRC. Our results showed that continuous P addition reduced MRC in the subsoil (20-40 cm) of both plantations (A. auriculiformis: 28.44% and E. urophylla: 28.29%), whereas no significant changes occurred in the topsoil (0-20 cm). N addition decreased MRC in the subsoil of E. urophylla (25.44%), but had no significant effects on A. auriculiformis. Combined N and P addition reduced MRC (34.63%) in the subsoil of A. auriculiformis but not in that of E. urophylla. The factors regulating MRC varied across soil layers. In the topsoil (0-10 cm), plant C input (the relative contributions to the total variance was 20%, hereafter) and mineral protection (47.2%) were dominant factors. In the soil layer of 10-20 cm, both microbial characteristics (41.3%) and mineral protection (32.3%) had substantial effects, whereas the deeper layer (20-40 cm) was predominantly regulated by microbial characteristics (37.9%) and mineral protection (18.8%). Understanding differential drivers of MRC across soil depth, particularly in deeper soil layers, is crucial for accurately predicting the stability and storage of SOC and its responses to chronic N enrichment and/or increased P limitation in (sub)tropical forests.


Subject(s)
Ecosystem , Phosphorus , Forests , Carbon , Nitrogen , Soil , Minerals
8.
Bioorg Med Chem ; 101: 117634, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38359754

ABSTRACT

Synthesis and biological evaluation of a small, focused library of 1,3-disubstituted-1,2,4-triazin-6-ones for in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) castration-resistant prostate cancer (CRPC) cells led to highly active compounds with in vitro IC50 values against 22Rv1 cells of <200 nM, and with apparent selectivity for this cell type over PC3 cells. From metabolic/PK evaluations of these compounds, a 3-benzyl-1-(2,4-dichlorobenzyl) derivative had superior properties and showed considerably stronger activity, by nearly an order of magnitude, against AR-dependent LNCaP and C4-2B cells compared to AR-independent DU145 cells. This lead compound decreased AR expression in a dose and time dependent manner and displayed promising therapeutic effects in a 22Rv1 CRPC xenograft mouse model. Computational target prediction and subsequent docking studies suggested three potential known prostate cancer targets: p38a MAPK, TGF-ß1, and HGFR/c-Met, with the latter case of c-Met appearing stronger, owing to close structural similarity of the lead compound to known pyridazin-3-one derivatives with potent c-Met inhibitory activity. RNA-seq analysis showed dramatic reduction of AR signalling pathway and/or target genes by the lead compound, subsequently confirmed by quantitative PCR analysis. The lead compound was highly inhibitory against HGF, the c-Met ligand, which fitted well with the computational target prediction and docking studies. These results suggest that this compound could be a promising starting point for the development of an effective therapy for the treatment of CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Triazines , Animals , Humans , Male , Mice , Androgens/metabolism , Cell Line, Tumor , Prostate/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Triazines/chemistry , Triazines/pharmacology
9.
J Environ Manage ; 353: 120288, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38335600

ABSTRACT

The spatial distribution of plant, soil, and microbial carbon pools, along with their intricate interactions, presents a great challenge for the current carbon cycle research. However, it is not clear what are the characteristics of the spatial variability of these carbon pools, particularly their cross-scale relationships. We investigated the cross-scale spatial variability of microbial necromass carbon (MNC), soil organic carbon (SOC) and plant biomass (PB), as well as their correlation in a tropical montane rainforest using multifractal analysis. The results showed multifractal spatial variations of MNC, SOC, and PB, demonstrating their adherence to power-law scaling. MNC, especially low MNC, exhibited stronger spatial heterogeneity and weaker evenness compared with SOC and PB. The cross-scale correlation between MNC and SOC was stronger than their correlations at the measurement scale. Furthermore, the cross-scale spatial variability of MNC and SOC exhibited stronger and more stable correlations than those with PB. Additionally, this research suggests that when SOC and PB are both low, it is advisable for reforestations to potentiate MNC formation, whereas when both SOC and PB are high some thinning can be advisable to favour MNC formation. Thus, these results support the utilization of management measures such as reforestation or thinning as nature-based solutions to regulate carbon sequestration capacity of tropical forests by affecting the correlations among various carbon pools.


Subject(s)
Carbon Sequestration , Rainforest , Carbon , Soil , Forests
10.
Environ Pollut ; 345: 123558, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38355088

ABSTRACT

A novel carbon catalyst was created based on plant metallurgy strategy for organic pollutants removal. Plants rich in CeO2 NPs in water were used as carbon precursors and pyrolyzed with urea to obtain Ce/N co-doped carbon catalysts, which were used in the degradation of sulfamethoxazole (SMX) by active peroxymonosulfate (PMS). The results showed that the Ce/N @BC/PMS system achieved to 94.5% degradation of SMX in 40 min at a rate constant of 0.0602 cm-1. The activation center of PMS is widely dispersed Ce oxide nanocrystals, and CeO2 NPs promote the formation of oxygen centered PFR with enhanced catalytic ability and longer half-life. In addition, N-doping facilitates the transfer of π-electrons within the sp2 carbon of biochar, increasing active sites and thus improving PMS activation efficiency. The degradation process was contributed to by both radical and non-radical activation mechanisms including 1O2 and direct electron transfer, with O2•- serving as 1O2's precursor. Through the DFT calculations, LC-MS and toxicological analyses, the degradation pathway of pollutants and the toxicity changes throughout the entire degradation process were further revealed, indicating that the degradation of SMX could effectively reduce ecological toxicity.


Subject(s)
Environmental Pollutants , Sulfamethoxazole , Sulfamethoxazole/chemistry , Peroxides/chemistry , Oxygen
11.
Int J Nanomedicine ; 19: 109-135, 2024.
Article in English | MEDLINE | ID: mdl-38192633

ABSTRACT

The tumor microenvironment (TME) plays an important role in various stages of tumor generation, metastasis, and evasion of immune monitoring and treatment. TME targeted therapy is based on TME components, related pathways or active molecules as therapeutic targets. Therefore, TME targeted therapy based on environmental differences between TME and normal cells has been widely studied. Biomimetic nanocarriers with low clearance, low immunogenicity, and high targeting have enormous potential in tumor treatment. This review introduces the composition and characteristics of TME, including cancer­associated fibroblasts (CAFs), extracellular matrix (ECM), tumor blood vessels, non-tumor cells, and the latest research progress of biomimetic nanoparticles (NPs) based on TME. It also discusses the opportunities and challenges of clinical transformation of biomimetic nanoparticles.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Biomimetics , Tumor Microenvironment , Neoplasms/drug therapy , Extracellular Matrix
12.
Glob Chang Biol ; 30(1): e17072, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273547

ABSTRACT

Tropical and subtropical forests play a crucial role in global carbon (C) pools, and their responses to warming can significantly impact C-climate feedback and predictions of future global warming. Despite earth system models projecting reductions in land C storage with warming, the magnitude of this response varies greatly between models, particularly in tropical and subtropical regions. Here, we conducted a field ecosystem-level warming experiment in a subtropical forest in southern China, by translocating mesocosms (ecosystem composed of soils and plants) across 600 m elevation gradients with temperature gradients of 2.1°C (moderate warming), to explore the response of ecosystem C dynamics of the subtropical forest to continuous 6-year warming. Compared with the control, the ecosystem C stock decreased by 3.8% under the first year of 2.1°C warming; but increased by 13.4% by the sixth year of 2.1°C warming. The increased ecosystem C stock by the sixth year of warming was mainly attributed to a combination of sustained increased plant C stock due to the maintenance of a high plant growth rate and unchanged soil C stock. The unchanged soil C stock was driven by compensating and offsetting thermal adaptation of soil microorganisms (unresponsive soil respiration and enzyme activity, and more stable microbial community), increased plant C input, and inhibitory C loss (decreased C leaching and inhibited temperature sensitivity of soil respiration) from soil drying. These results suggest that the humid subtropical forest C pool would not necessarily diminish consistently under future long-term warming. We highlight that differential and asynchronous responses of plant and soil C processes over relatively long-term periods should be considered when predicting the effects of climate warming on ecosystem C dynamics of subtropical forests.


Subject(s)
Carbon Sequestration , Ecosystem , Climate Change , Forests , Carbon , Soil
13.
Adv Sci (Weinh) ; 11(13): e2309293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38258489

ABSTRACT

The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.

14.
J Drug Target ; 31(10): 1065-1080, 2023 12.
Article in English | MEDLINE | ID: mdl-37962304

ABSTRACT

Nanoparticle-based drug delivery systems have found extensive use in delivering oncology therapeutics; however, some delivery vehicles still exhibit rapid immune clearance, lack of biocompatibility and insufficient targeting. In recent years, bionanoparticles constructed from tumour cell membranes have gained momentum as tumour-targeting therapeutic agents. Cancer cell membrane-coated nanoparticles (CCMCNPs) typically consist of a drug-loaded nanoparticle core coated with cancer cell membrane. CCMCNPs retain homologous tumour cell surface antigens, receptors and proteins, and it has been shown that the modified nanoparticles exhibit better homologous targeting, immune escape and biocompatibility. CCMCNPs are now widely used in a variety of cancer treatments, including photothermal, photodynamic and sonodynamic therapies, chemotherapy, immunotherapy, chemodynamical therapy or other combination therapies. This article presents different therapeutic approaches using multimodal antitumour therapy-combination of two or more therapies that treat tumours synergistically-based on tumour cell membrane systems. The advantages of CCMCNPs in different cancer treatments in recent years are summarised, thus, providing new strategies for cancer treatment research.


Subject(s)
Nanoparticles , Neoplasms , Humans , Bionics , Neoplasms/drug therapy , Neoplasms/pathology , Nanoparticles/therapeutic use , Drug Delivery Systems , Phototherapy
15.
Front Oncol ; 13: 1181176, 2023.
Article in English | MEDLINE | ID: mdl-37916167

ABSTRACT

Objective: Our previous studies have demonstrated that Plasmodium immunotherapy (infection) has antitumor effects in mice. However, as a new form of immunotherapy, this therapy has a weakness: its specific killing effect on tumor cells is relatively weak. Therefore, we tested whether Plasmodium immunotherapy combined with gemcitabine (Gem), a representative chemotherapy drug, has synergistic antitumor effects. Methods: We designed subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) models to test the antitumor effect of Plasmodium chabaudi ASS (Pc) infection in combination with Gem treatment and explored its underlying mechanisms. Results: We found that both Pc infection alone and Gem treatment alone significantly inhibited tumor growth in the subcutaneous model, and combination therapy was more effective than either monotherapy. Monotherapy only tended to prolong the survival of tumor-bearing mice, while the combination therapy significantly extended the survival of mice, indicating a significant synergistic effect of the combination. In the mechanistic experiments, we found that the combination therapy significantly upregulated E-cadherin and downregulated Snail protein expression levels, thus inhibiting epithelial-mesenchymal transition (EMT) of tumor cells, which may be due to the blockade of CXCR2/TGF-ß-mediated PI3K/Akt/GSK-3ß signaling pathway. Conclusion: The combination of Pc and Gem plays a synergistic role in inhibiting tumor growth and metastasis, and prolonging mice survival in murine lung cancer models. These effects are partially attributed to the inhibition of EMT of tumor cells, which is potentially due to the blockade of CXCR2/TGF-ß-mediated PI3K/Akt/GSK-3ß/Snail signaling pathway. The clinical transformation of Plasmodium immunotherapy combined with Gem for lung cancer is worthy of expectation.

16.
J Chem Phys ; 159(16)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37873963

ABSTRACT

Double-atom catalysts (DACs) for harmful nitrate (NO3-) electroreduction to valuable ammonia (eNO3RR) is attractive for both environmental remediation and energy transformation. However, the limited metal loading in most DACs largely hinders their applications in practical catalytic applications. Therefore, exploring ultrahigh-density (UHD) DACs with abundant active metal centers and excellent eNO3RR activity is highly desired under the site-distance effect. Herein, starting from the experimental M2N6 motif deposited on graphene, we firstly screened the low-density (LD) Mn2N6 and Fe2N6 DACs with high eNO3RR activity and then established an appropriate activity descriptor for the LD-DAC system. By utilizing this descriptor, the corresponding Mn2N6 and Fe2N6 UHD-DACs with dynamic, thermal, thermodynamic, and electrochemical stabilities, are identified to locate at the peak of activity volcano, exhibiting rather-low limiting potentials of -0.25 and -0.38 V, respectively. Further analysis in term of spin state and orbital interaction, confirms that the electronic state effect similar to that of LD-DACs enable the excellent eNO3RR activity to be maintained in the UHD-DACs. These findings highlight the promising application of Mn2N6 and Fe2N6 UHD-DACs in nitrate electroreduction for NH3 production and provide impetus for further experimental exploration of ultrahigh-density DACs based on their intrinsic electronic states.

17.
Opt Express ; 31(21): 34011-34020, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859166

ABSTRACT

In this paper, we put up a robust design of a stable single-mode-operated GaSb-based laser diode emitting around 1950nm. This novel design structure with socketed ridge-waveguide enables a simple fabrication and batch production of mid-infrared laser diodes on account of the mere usage of standard photolithography. By introducing micron-level index perturbations distributed along the ridge waveguide, the threshold gains of different FP modes are modulated. Four geometrical parameters of the perturbations are systematically optimized by analyzing the reflection spectrum to get a robust single-mode characteristic. Based on the optimized geometrical parameters, 1-mm long uncoated lasers are carried out and exhibit a stable single longitudinal mode from 10 °C to 40 °C with a maximum output power of more than 10 mW. Thus, we prove the feasibility of the standard photolithography to manufacture the monolithic single-mode infrared laser source without regrowth process or nanoscale lithography.

18.
Food Funct ; 14(21): 9947-9948, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37869784

ABSTRACT

Correction for 'Long-chain polyunsaturated fatty acids and extensively hydrolyzed casein-induced browning in a Ucp-1 reporter mouse model of obesity' by Liufeng Mao et al., Food Funct., 2018, 9, 2362-2373, https://doi.org/10.1039/C7FO01835E.

19.
Sci Total Environ ; 904: 166962, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37696397

ABSTRACT

In southern China, Chinese fir Cunninghamia lanceolata is one of the most important native conifer trees, widely used in afforestation programs. This area has the largest forestland atmospheric carbon sink, and a relatively young stand age characterizes these forests. However, how C. lanceolata forests evolved regarding their ability to sequester carbon remains unclear. Here we present data on carbon storage and sequestration capacity of C. lanceolata at six stand ages (5-, 10-, 15-, 20-, 30- and 60 - year-old stands). Results show that the carbon stock in trees, understory, vegetation, litter, soil, and ecosystem significantly increased with forest age. The total ecosystem carbon stock increased from 129.11 to 348.43 Mg ha-1 in the 5- and 60 - year-old stands. The carbon sequestration rate of C. lanceolata shows an overall increase in the first two stand intervals (5-10 and 10-15), peaks in the 15-20 stand intervals, and then decreases in the 20-30 and 30-60 stand intervals. Our result revealed that carbon sequestration rate is a matter of tree age, with the highest sequestration rates occurring in the middle age forest (15-20 - year-old). Therefore, this information may be useful for national climate change mitigation actions and afforestation programs, since forests are primarily planted for this purpose.


Subject(s)
Cunninghamia , Ecosystem , Carbon Sequestration , Forests , Trees , Soil , Carbon/analysis , China , Biomass
20.
Nanoscale ; 15(39): 16056-16067, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37728053

ABSTRACT

Tailoring the coordination environment is an effective strategy to modulate the electronic structure and catalytic activity of atomically dispersed transition-metal (TM) catalysts, which has been widely investigated for single-atom catalysts but received less attention for emerging double-atom catalysts (DACs). Herein, based on first-principles calculations, taking the commonly studied N-coordinated graphene-based DACs as references, we explored the effect of coordination engineering on the catalytic behaviors of DACs towards the electrocatalytic nitrogen reduction reaction (NRR), which is realized through replacing one N atom by the B or O atom to form B, N or O, N co-coordinated DACs. We found that B, N or O, N co-coordination could significantly strengthen N2 adsorption and alter the N2 adsorption pattern of the TM dimer active center, which greatly facilitates N2 activation. Moreover, on the studied DACs, the linear scaling relationship between the binding strengths of key intermediates can be attenuated. Consequently, the O, N co-coordinated Mn2 DACs, exhibiting an ultralow limiting potential of -0.27 V, climb to the peak of the activity volcano. In addition, the experimental feasibility of this DAC system was also identified. Overall, benefiting from the coordination engineering effect, the chemical activity and catalytic performance of the DACs for NRR can be significantly boosted. This phenomena can be understood from the adjusted electronic structure of the TM dimer active center due to the changes of its coordination microenvironment, which significantly affects the binding strength (pattern) of key intermediates and changes the reaction pathways, leading to enhanced NRR activity and selectivity. This work highlights the importance of coordination engineering in developing DACs for the electrocatalytic NRR and other important reactions.

SELECTION OF CITATIONS
SEARCH DETAIL