Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.351
Filter
1.
Cancer Lett ; : 216930, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705566

ABSTRACT

Radiotherapy (RT) in non-small cell lung cancer (NSCLC) triggers cellular senescence, complicating tumor microenvironments and affecting treatment outcomes. This study examines the role of lymphocyte immunoglobulin-like receptor B2 (LILRB2) in modulating RT-induced senescence and radiosensitivity in NSCLC. Through methodologies including irradiation, lentivirus transfection, and various molecular assays, we assessed LILRB2's expression and its impact on cellular senescence levels and tumor cell behaviors. Our findings reveal that RT upregulates LILRB2, facilitating senescence and a senescence-associated secretory phenotype (SASP), which in turn enhances tumor proliferation and resistance to radiation. Importantly, LILRB2 silencing attenuates these effects by inhibiting the JAK2/STAT3 pathway, significantly increasing radiosensitivity in NSCLC models. Clinical data correlate high LILRB2 expression with reduced RT response and poorer prognosis, suggesting LILRB2's pivotal role in RT-induced senescence and its potential as a therapeutic target to improve NSCLC radiosensitivity.

2.
Adv Mater ; : e2401508, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747492

ABSTRACT

Electronic stethoscope used to detect cardiac sounds that contains essential clinical information is a primary tool for diagnosis of various cardiac disorders. However, the linear electro-mechanical constitutive relation makes conventional piezoelectric sensors rather ineffective to detect low-intensity, low-frequency heart acoustic signal without the assistance of complex filtering and amplification circuits. Herein, we find that triboelectric sensor features superior advantages over piezoelectric one for micro-quantity sensing originated from the fast saturated constitutive characteristic. As a result, the triboelectric sensor shows ultrahigh sensitivity (1215 mV/Pa) than the piezoelectric counterpart (21 mV/Pa) in the sound pressure range of 50 - 80 dB under the same testing condition. By designing a trumpet-shaped auscultatory cavity with a power function cross-section to achieve acoustic energy converging and impedance matching, triboelectric stethoscope delivers 36 dB signal-to-noise ratio for human test (2.3 times of that for piezoelectric one). Further combining with machine learning, five cardiac states can be diagnosed at 97% accuracy. In general, the triboelectric sensor is distinctly unique in basic mechanism, provides a novel design concept for sensing micromechanical quantities, and presents significant potential for application in cardiac sounds sensing and disease diagnosis. This article is protected by copyright. All rights reserved.

3.
J Am Chem Soc ; 146(19): 12883-12888, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709642

ABSTRACT

Polyamides represent one class of materials that is important in modern society. Because of the numerous potential applications of polyamides in various fields, there is a high demand for new polyamide structures, which necessitates the development of new polymerization methods. Herein, we report a novel and efficient palladium-catalyzed hydroaminocarbonylative polymerization of dienes and diamines for the synthesis of cycloaliphatic polyamides. The method employs readily available starting materials, proceeds in an atom-economic manner, and creates a series of new functional polyamides in high yields and high molecular weights. In contrast with the traditional polyamides based on adipic acid, the cycloaliphatic polyamides have superior thermal resistance, higher glass-transition temperature, and better solubility in common organic solvents, thus probably featuring the merits of high-performance and good processability.

4.
ChemSusChem ; : e202301847, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727018

ABSTRACT

Organic electrode materials are promising to be applied in sodium ion batteries (SIBs) due to their low cost and easily modified molecular structures. Nevertheless, low conductivity and high solubility in electrolytes still limit the development of organic electrodes. In this work, a carboxylate small molecule (BDTTS) based on tetrathiafulvalene is developed as anode material for SIBs. BDTTS has a large rigid π-conjugated planar structure, which may reduce solubility in the electrolyte, meanwhile facilitating charge transporting. Experimental results and theoretical calculations both support that apart from the four carbonyl groups, the sulfur atoms on tetrathiafulvalene also provide additional active sites during the discharge/charge process. Therefore, the additional active sites can well compensate for the capacity loss caused by the large molecular weight. The as-synthesized BDTTS electrode renders an excellent capacity of 230 mAh g-1 at a current density of 50 mA g-1 and an excellent long-life performance of 128 mAh g-1 at 2C after 500 cycles. This work enriches the study on organic electrodes for high-performance SIBs and paves the way for further development and utilization of organic electrodes.

5.
Small ; : e2312122, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709229

ABSTRACT

Management of functional groups in hole transporting materials (HTMs) is a feasible strategy to improve perovskite solar cells (PSCs) efficiency. Therefore, starting from the carbazole-diphenylamine-based JY7 molecule, JY8 and JY9 molecules are incorporated into the different electron-withdrawing groups of fluorine and cyano groups on the side chains. The theoretical results reveal that the introduction of electron-withdrawing groups of JY8 and JY9 can improve these highest occupied molecular orbital (HOMO) energy levels, intermolecular stacking arrangements, and stronger interface adsorption on the perovskite. Especially, the results of molecular dynamics (MD) indicate that the fluorinated JY8 molecule can yield a preferred surface orientation, which exhibits stronger interface adsorption on the perovskite. To validate the computational model, the JY7-JY9 are synthesized and assembled into PSC devices. Experimental results confirm that the HTMs of JY8 exhibit outstanding performance, such as high hole mobility, low defect density, and efficient hole extraction. Consequently, the PSC devices based on JY8 achieve a higher PCE than those of JY7 and JY9. This work highlights the management of the electron-withdrawing groups in HTMs to realize the goal of designing HTMs for the improvement of PSC efficiency.

6.
Cell Cycle ; : 1-15, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701194

ABSTRACT

Myogenic differentiation (MyoD) 1, which is known as a pivotal transcription factor during myogenesis, has been proven dysregulated in several cancers. However, litter is known about the precise role and downstream genes of MyoD1 in gastric cancer (GC) cells. Here, we report that MyoD1 is lowly expressed in primary GC tissues and cells. In our experiments, overexpression of MyoD1 inhibited cell proliferation. Downstream genes of MyoD1 regulation were investigated using RNA-Seq. As a result, 138 up-regulated genes and 20 down-regulated genes and 27 up-regulated lncRNAs and 20 down-regulated lncRNAs were identified in MyoD1 overexpressed MKN-45 cells, which participated in epithelial cell signaling in Helicobacter pylori infection, glycosaminoglycan biosynthesis (keratan sulfate), notch signaling pathway, and others. Among these genes, BIK was directly regulated by MyoD1 in GC cells and inhibited cancer cell proliferation. The BIK knockdown rescued the effects of MyoD1 overexpression on GC cells. In conclusion, MyoD1 inhibited cell proliferation via 158 genes and 47 lncRNAs downstream directly or indirectly that participated in multiple signaling pathways in GC, and among these, MyoD1 promotes BIK transcription by binding to its promoter, then promotes BIK-Bcl2-caspase 3 axis and regulates GC cell apoptosis.

7.
J Food Sci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742366

ABSTRACT

Heracleum dissectum is rich in nutrients, but there is little research on its soluble dietary fiber (SDF). In this study, SDF from H. dissectum was extracted by enzyme extraction (E-SDF), enzyme chemical extraction (EC-SDF), and fermentation extraction (F-SDF). The composition, molecular weight (Mw), structural characterization, and antioxidant activity of SDF extracted by the three methods were compared. This study showed that different extraction methods lead to differences in their structure. The Mw results showed that F-SDF had the largest Mw, the structure of SDF could be destroyed by enzymatic hydrolysis, and large molecules could be converted into small molecules. The monosaccharide composition analysis showed that the main sugars of E-SDF, EC-SDF, and F-SDF were galacturonic acid and galactose, and the main components of the three SDF samples were hemicellulose hydrolyzed pectin and soluble polysaccharide. Notably, E-SDF had the greatest antioxidant effect at the same concentration. In summary, different extraction methods can affect the structure and antioxidant capacity of H. dissectum SDF, among which E-SDF has potential as a functional food ingredient.

8.
Biol Direct ; 19(1): 28, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650011

ABSTRACT

BACKGROUND: Osteosarcoma is a diverse and aggressive bone tumor. Driver genes regulating osteosarcoma initiation and progression remains incompletely defined. Zinc finger protein 692 (ZNF692), a kind of Krüppel C2H2 zinc finger transcription factor, exhibited abnormal expression in different types of malignancies and showed a correlation with the clinical prognosis of patients as well as the aggressive characteristics of cancer cells. Nevertheless, its specific role in osteosarcoma is still not well understood. METHODS: We investigated the dysregulation and clinical significance of ZNF692 in osteosarcoma through bioinformatic method and experimental validation. A range of in vitro assays, including CCK-8, colony formation, EdU incorporation, wound healing, and transwell invasion tests, were conducted to assess the impact of ZNF692 on cell proliferation, migration, and invasion in osteosarcoma. A xenograft mouse model was established to evaluate the effect of ZNF692 on tumor growth in vivo. Western blot assay was used to measure the protein levels of MEK1/2, P-MEK1/2, ERK1/2, and P-ERK1/2 in cells that had been genetically modified to either reduce or increase the expression of ZNF692. The relationship between ZNF692 and tyrosine kinase non-receptor 2 (TNK2) were validated by qRT-PCR, chromatin immunoprecipitation and luciferase reporter assays. RESULTS: Expression of ZNF692 was increased in both human osteosarcoma tissues and cell lines. Furthermore, the expression of ZNF692 served as an independent predictive biomarker in osteosarcoma. The results of the survival analysis indicated that increased expression of ZNF692 was associated with worse outcome. Downregulation of ZNF692 inhibits the proliferation, migration, and invasion of osteosarcoma cells, whereas upregulation of ZNF692 has the opposite impact. Western blot assay indicates that reducing ZNF692 decreases phosphorylation of MEK1/2 and ERK1/2, whereas increasing ZNF692 expression enhances their phosphorylation. U0126, a potent inhibitor specifically targeting the MEK/ERK signaling pathway, partially counteracts the impact of ZNF692 overexpression on the proliferation, migration, and invasion of osteosarcoma cells. In addition, ZNF692 specifically interacts with the promoter region of TNK2 and stimulates the transcription of TNK2 in osteosarcoma cells. Forcing the expression of TNK2 weakens the inhibitory impact of ZNF692 knockdown on P-MEK1/2 and P-ERK1/2. Similarly, partly inhibiting TNK2 counteracts the enhancing impact of ZNF692 overexpression on the phosphorylation of MEK1/2 and ERK1/2. Functional tests demonstrate that the suppressive effects of ZNF692 knockdown on cell proliferation, migration, and invasion are greatly reduced when TNK2 is overexpressed. In contrast, the reduction of TNK2 hinders the ability of ZNF692 overexpression to enhance cell proliferation, migration, and invasion. CONCLUSION: ZNF692 promotes the proliferation, migration, and invasion of osteosarcoma cells via the TNK2-dependent stimulation of the MEK/ERK signaling pathway. The ZNF692-TNK2 axis might potentially function as a possible predictive biomarker and a promising target for novel therapeutics in osteosarcoma.


Subject(s)
Cell Movement , Cell Proliferation , MAP Kinase Signaling System , Osteosarcoma , Animals , Female , Humans , Mice , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Nude , Neoplasm Invasiveness , Osteosarcoma/genetics , Osteosarcoma/metabolism
9.
Zhongguo Zhong Yao Za Zhi ; 49(3): 618-624, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621865

ABSTRACT

In the process of preparing presonalized concentrated watered pills, the decoction needs to be concentrated by heat and mixed with medicinal slices or powder to prepare a wet mass. However, some of the traditional Chinese medicine(TCM) components are easily decomposed or transformed by heat. In order to optimize the preparation process of presonalized TCM concentrated watered pills and reduce the loss of heat-unstable components in prescriptions, this study uses five compound TCM prescriptions containing heat-unstable components as model prescriptions, namely the Linggui Zhugan Formula, Xiaochengqi Formula, Sanpian Formula, Xiaoer Qixing Formula, and Xiaoyao Formula. Based on the two kinds of preparation process of presonalized concentrated watered pills previously established by our research group, whole extract concentrated watered pills and concentrated watered pills without excipients are prepared, respectively. Characteristic maps are measured and compared with those of the corresponding decoction. The results show that the characteristic maps of the concentrated watered pills without excipients of the five model prescriptions are very close to those of the decoction, and the number of characteristic peaks and peak areas are higher than those of whole extract concentrated watered pills. In addition, the peak area of some peaks is higher than that of the corresponding decoction. Thus, it is recommended to select the preparation process of prescription-based concentrated watered pills without excipients based on the "unification of medicines and excipients" to preserve those heat-unstable components more effectively when the prescription contains a heat-unstable component of TCM. This study provides a basis for the subsequent reasonable development and application of presonalized TCM pills.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Excipients , Hot Temperature , Prescriptions
10.
Angew Chem Int Ed Engl ; : e202406226, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618886

ABSTRACT

In contrast to the kinetically favored outward isomerization-hydrocarbonylation of alkenes, the disfavored inward isomerization-hydrocarbonylation of alkenes remains an important challenge. Herein, we have developed a novel and effective palladium-catalyzed inward isomerization-hydroaminocarbonylation of unactivated alkenes and aniline hydrochlorides for the formation of synthetically valuable α-aryl carboxylic amides in high yields and high site-selectivities. The high efficiency of the reaction is attributed to a relay catalysis strategy, in which the Markovnikov-favored [PdH]-PtBu3 catalyst is responsible for inward isomerization, while the [PdH]-Ruphos catalyst is responsible for hydroaminocarbonylation of the resulting conjugated aryl alkenes. The reaction exhibits highly functional group tolerance and provides a new method for formal carbonylation of remote C(sp3)-H bond.

11.
ACS Sens ; 9(4): 2149-2155, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38579117

ABSTRACT

Real-time tracking of respiratory patterns provides noninvasive and quick access for evaluating pathophysiological conditions yet remains challenging due to limited temporal resolution and poor sensitivity to dig out fingerprints of respiratory waveforms. Here, we report an electrochemical sensor for accurately tracing respiratory patterns of small animal models based on the electrochemical impedance mechanism for wireless coupling of a graphdiyne oxide (GYDO)-modified sensing coil chip and a reader coil chip via near-field magnetic induction. In the electrochemical impedance measurement mode, an alternating current is applied through the reader coil chip to perturb proton transport at the GYDO interface of the sensing coil chip. As demonstrated, a high-frequency perturbing condition significantly reduces the interfacial resistance for proton transport by 5 orders of magnitude under 95% relative humidity (RH) and improves the low-humidity responses with a limit of detection down to 0.2% RH, enabling in vivo accurate profiling of respiratory patterns on epileptic rats. The electrochemical impedance coupling system holds great potential for new wireless bioelectronics.


Subject(s)
Electrochemical Techniques , Animals , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Rats , Graphite/chemistry , Respiration , Rats, Sprague-Dawley , Electric Impedance , Epilepsy/diagnosis
12.
Neurochem Int ; 177: 105747, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657682

ABSTRACT

Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.

13.
J Thorac Dis ; 16(3): 1787-1803, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38617775

ABSTRACT

Background: Immune checkpoint inhibitors (ICIs) have dramatically changed the first-line treatment pattern of non-small cell lung cancer (NSCLC) without driver gene alterations. However, the optimal choice for second-line treatment after initial treatment with ICIs is unclear. This study aimed to clarify the efficacy and safety of ICI rechallenge therapy in locally advanced and advanced NSCLC. Methods: We retrospectively analyzed the histories of 224 patients with locally advanced or advanced NSCLC treated with programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors alone or in combination with chemotherapy and/or antiangiogenic therapy in first-line treatment. Progression-free survival 2 (PFS2) was the time from the first defined progress disease (PD) to the second disease progression or death. Efficacy evaluation was performed directly in accordance with RECIST v1.1 criteria. Adverse events (AEs) were graded following the National Cancer Institute Common Terminology Criteria for Adverse Events v5.0. Survival data were estimated using the Kaplan-Meier method or Cox survival regression model and compared using the log-rank test in overall cohort and other subgroups. Results: There were no significant differences in objective response rate (ORR) and median PFS2 (mPFS2) between the ICI rechallenge group and non-rechallenge group (ORR: 10.3% vs. 15.3%, P=0.308; mPFS2: 5.33 vs. 4.40 months, P=0.715). And the ICI rechallenge group showed no new safety signals compared with non-rechallenge group. In ICI rechallenge group, patients resistant to first-line immunotherapy had a lower ORR and shorter PFS2 compared with those who responded to initial ICIs treatment (ORR: 7.0% vs. 17.6%, P=0.038; mPFS2: 3.68 vs. 5.91 months, P=0.014). No significant difference in mPFS2 was observed among different second-line treatment groups (P=0.362). Radiotherapy in second-line treatment and ICI rechallenge therapy were not the main factors affecting PFS2. Conclusions: ICI rechallenge therapy beyond disease progression did not improve clinical outcomes in patients with NSCLC, but no new safety signals emerged. However, patients with favorable response to initial ICIs treatment still showed significant efficacy of subsequent ICI rechallenge therapy.

14.
Clin Exp Pharmacol Physiol ; 51(6): e13855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636942

ABSTRACT

Cardiac microvascular endothelial cells (CMECs) are important cells surrounding the cardiomyocytes in the heart that maintain microenvironment homeostasis. Salvianic acid A sodium (SAAS) has been reported to prevent myocardial infarction (MI) injury. However, the role of SAAS on CMEC proliferation remains unclear. CEMCs exposed to oxygen glucose deprivation (OGD) were used to explore the angiogenic abilities of SAAS. In vivo, C57BL/6 mice were divided into three groups: sham, MI and SAAS + MI groups. Compared to OGD group, SAAS led to a reduction in the apoptotic rate and an increase of the proliferation in vitro. Additionally, SAAS increased the protein levels of Bcl2, HIF-1α and vascular endothelial growth factor (VEGF) with the reduction of Bax. In terms of the specific mechanisms, SAAS might inhibit HIF-1α ubiquitination and enhance the HIF-1α/VEGF signalling pathway to increase CMEC proliferation. Furthermore, SAAS increased the density of vessels, inhibited myocardial fibrosis and improved cardiac dysfunction in vivo. The present study has revealed that SAAS could potentially be used as an active substance to facilitate CMEC proliferation post-MI.


Subject(s)
Lactates , Myocardial Infarction , Vascular Endothelial Growth Factor A , Mice , Animals , Endothelial Cells/metabolism , Sodium/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Cell Proliferation , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
15.
Eur J Nutr ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622294

ABSTRACT

PURPOSE: The available evidence regarding the role of fruit and vegetable consumption in the development of colorectal polyps remains inconclusive, and there is a lack of data on different histopathologic features of polyps. We aimed to evaluate the associations of fruit and vegetable consumption with the prevalence of colorectal polyps and its subtypes in a high-risk population in China. METHODS: We included 6783 Chinese participants aged 40-80 years who were at high risk of colorectal cancer (CRC) in the Lanxi Pre-colorectal Cancer Cohort (LP3C). Dietary information was obtained through a validated food-frequency questionnaire (FFQ), and colonoscopy screening was used to detect colorectal polyps. Dose-response associations of fruit and vegetable intake with the prevalence of polyps were calculated using multivariate-adjusted regression models, which was reported as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS: 2064 cases of colorectal polyps were ascertained in the LP3C during 2018-2019. Upon multivariable adjustments, including the diet quality, fruit consumption was inversely associated with the prevalence of polyps (P trend = 0.02). Participants in the highest tertile of fruit intake had a 25% lower risk (OR: 0.75; 95% CI 0.62‒0.92) compared to non-consumers, while vegetable consumption had no significant association with polyp prevalence (P trend = 0.86). In terms of colorectal histopathology and multiplicity, higher fruit intake was correlated with 24, 23, and 33% lower prevalence of small polyps (OR: 0.76; 95% CI 0.62‒0.94; P trend = 0.05), single polyp (OR: 0.77; 95% CI 0.62‒0.96; P trend = 0.04), and distal colon polyps (OR: 0.67; 95% CI 0.51‒0.87; P trend = 0.003), respectively. CONCLUSIONS: Fresh fruit is suggested as a protective factor to prevent colorectal polyps in individuals at high risk of CRC, and should be underscored in dietary recommendations, particularly for high-risk populations.

16.
Eur J Hum Genet ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627542

ABSTRACT

Acrokeratoelastoidosis (AKE) is a rare autosomal dominant hereditary skin disease characterized by small, round-oval, flat-topped keratotic papules on the palms, soles and dorsal aspect of hands or feet. The causative gene for AKE remains unidentified. This study aims to identify the causative gene of AKE and explore the underlying biological mechanisms. A large, three-generation Chinese family exhibiting classic AKE symptoms was identified. A genome-wide linkage analysis and whole-exome sequencing were employed to determine the causative gene. shRNA knockdown in human skin fibroblasts and CRISPR/Cas9 knockout in HEK293T cells were utilized to assess gene functions in the progression of elastic fiber biosynthesis. The linkage analysis identified a susceptibility region between rs7296765 to rs10784618 on chromosome 12. Whole-exome sequencing confirmed a splicing mutation of 1101 + 1 G > A in the CCDC91 gene, resulting in exon 11 skipping and a subsequent 59-amino-acid-residue loss (residues L309-Q367del). Further functional analysis revealed distended Golgi cisternae, cytoplasmic vesicle accumulation, and lysosome presence. Immnunostaining of si-CCDC91-HSF cells demonstrated tropoelastin accumulation in the Golgi and abnormal extracellular aggregates. There are no significant changes in Fibrillin-1 microfibril assembly and lysyl oxidase activity. The findings strongly suggest that the protein product of the CCDC91 gene plays a crucial role in elastin transport. This discovery enhances our understanding of CCDC91's function and broadens the known pathogenic mechanisms of AKE.

17.
BMJ Open ; 14(4): e075269, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569715

ABSTRACT

OBJECTIVES: The objective was to investigate the associations of maternal prepregnancy body mass index (BMI) and gestational weight gain (GWG) trajectories with adverse pregnancy outcomes (APOs). DESIGN: This was a prospective cohort study. SETTING: This study was conducted in Shanghai Pudong New Area Health Care Hospital for Women and Children, Shanghai, China. PRIMARY AND SECONDARY OUTCOME MEASURES: A cohort study involving a total of 2174 pregnant women was conducted. Each participant was followed to record weekly weight gain and pregnancy outcomes. The Institute of Medicine classification was used to categorise prepregnancy BMI, and four GWG trajectories were identified using a latent class growth model. RESULTS: The adjusted ORs for the risks of large for gestational age (LGA), macrosomia, gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP) were significantly greater for women with prepregnancy overweight/obesity (OR=1.77, 2.13, 1.95 and 4.24; 95% CI 1.3 to 2.42, 1.32 to 3.46, 1.43 to 2.66 and 2.01 to 8.93, respectively) and lower for those who were underweight than for those with normal weight (excluding HDP) (OR=0.35, 0.27 and 0.59; 95% CI 0.22 to 0.53, 0.11 to 0.66 and 0.36 to 0.89, respectively). The risk of small for gestational age (SGA) and low birth weight (LBW) was significantly increased in the underweight group (OR=3.11, 2.20; 95% CI 1.63 to 5.92, 1.10 to 4.41; respectively) compared with the normal-weight group; however, the risk did not decrease in the overweight/obese group (p=0.942, 0.697, respectively). GWG was divided into four trajectories, accounting for 16.6%, 41.4%, 31.7% and 10.3% of the participants, respectively. After adjustment for confounding factors, the risk of LGA was 1.54 times greater for women in the slow GWG trajectory group than for those in the extremely slow GWG trajectory group (95% CI 1.07 to 2.21); the risk of SGA and LBW was 0.37 times and 0.46 times lower for women in the moderate GWG trajectory group and 0.14 times and 0.15 times lower for women in the rapid GWG trajectory group, respectively; the risk of macrosomia and LGA was 2.65 times and 2.70 times greater for women in the moderate GWG trajectory group and 3.53 times and 4.36 times greater for women in the rapid GWG trajectory group, respectively; and the women in the other three trajectory groups had a lower risk of GDM than did those in the extremely slow GWG trajectory group, but there was not much variation in the ORs. Notably, different GWG trajectories did not affect the risk of HDP. CONCLUSIONS: As independent risk factors, excessively high and low prepregnancy BMI and GWG can increase the risk of APOs.


Subject(s)
Diabetes, Gestational , Gestational Weight Gain , Child , Female , Pregnancy , Humans , Pregnancy Outcome/epidemiology , Overweight/complications , Overweight/epidemiology , Body Mass Index , Fetal Macrosomia/epidemiology , Fetal Macrosomia/complications , Cohort Studies , Thinness/complications , Thinness/epidemiology , Prospective Studies , China/epidemiology , Weight Gain , Obesity/complications , Obesity/epidemiology , Diabetes, Gestational/epidemiology , Weight Loss
19.
Materials (Basel) ; 17(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673068

ABSTRACT

Compared with circular, arched, and pipe-arched soil-steel structures, box-type soil-steel structures (BTSSSs) have the advantages of high cross-section utilization and low cover depth. However, the degree of influence of the crown and haunch radii on the mechanical performance of BTSSSs is still unclear. Therefore, two full-scale BTSSS models with a span of 6.6 m and a rise of 3.7 m but with different crown and haunch radii were established, and the mechanical properties during backfilling and under live load were tested. Afterward, 2D finite element models (FEMs) were established using the ABAQUS 2020 software and verified using the test data. The influence of cross-section geometric parameters on mechanical performance was analyzed by using the FEM, and a more accurate formula for calculating the bending moment during backfilling was proposed. The results show that the BTSSS with a smaller crown radius has a stronger soil-steel interaction, which promotes more uniform stress on the structure and makes the structure have smaller relative deformations, bending moments, and earth pressure. The span and arch height greatly influence the bending moment and deformation of the structure. Based on the CHBDC, the crown and haunch radii were included in the revised calculation formula.

20.
Biol Open ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682287

ABSTRACT

Pex23 family proteins localize to the endoplasmic reticulum and play a role in peroxisome and lipid body formation. The yeast Hansenula polymorpha contains four members: Pex23, Pex24, Pex29 and Pex32. We previously showed that loss of Pex24 or Pex32 results in severe peroxisomal defects, caused by reduced peroxisome-endoplasmic reticulum contact sites. We now analyzed the effect of the absence of all four Pex23 family proteins on other cell organelles. Vacuoles were normal in all four deletion strains. The number of lipid droplets was reduced in pex23 and pex29, but not in pex24 and pex32 cells, indicating that peroxisome and lipid droplet formation require different Pex23 family proteins in H. polymorpha. In pex23 and pex29 cells mitochondria were fragmented and clustered accompanied by reduced levels of the fusion protein Fzo1. Deletion of DNM1 suppressed the morphological phenotype of pex23 and pex29 cells, suggesting that mitochondrial fusion is affected. pex23 and pex29 cells showed retarded growth and reduced mitochondrial activities. The growth defect was partially suppressed by DNM1 deletion as well as by an artificial mitochondrion-endoplasmic reticulum tether. Hence, the absence of Pex23 family proteins may influence mitochondrion-endoplasmic reticulum contact sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...