Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biology (Basel) ; 12(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37372170

ABSTRACT

The reduction in habitat quality (as shown, in part, by the increase in habitat rarity) is an important challenge when protecting the Yunnan snub-nosed monkey. We used the InVEST model to quantitatively analyze the dynamic changes in the habitat of the Yunnan snub-nosed monkey from 1975 to 2022. The results show that in the study period, the degree of habitat degradation increased, with the degradation range at its widest in the south, and the degradation intensity highest in the north, especially along a center "spine" area in the north. Over the latter part of the study period, the habitat quality of most monkey groups improved, which is conducive to the survival and reproduction of the population. However, the habitat quality and monkey populations are still at significant risk. The results provide the basis for formulating the protection of the Yunnan snub-nosed monkey and provide research cases for the protection of other endangered species.

2.
Biology (Basel) ; 11(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36290390

ABSTRACT

The habitats of the already endangered Yunnan snub-nosed monkey (Rhinopithecus bieti) are degrading as village economies develop in and around these habitat areas, increasing the depopulation and biodiversity risk of the monkey. The paper aims to show the areas of these monkeys' high-quality habitats that are at highest risk of degradation by continued village development and hence be the focus of conservation efforts. Our analysis leveraged multiple tools, including primary component analysis, the InVEST Habitat-Quality model, and GIS spatial analysis. We enhanced our analysis by looking at habitat quality as it relates to the habitat suitability for the monkey specifically, instead of general habitat quality. We also focused on the impact of the smallest administrative scale in China-the village. These foci produced a clearer picture of the monkeys' and villages' situations, allowing for more targeted discussions on win-win solutions for both the monkeys and the village inhabitants. The results show that the northern habitat for the monkey is currently higher quality than the southern habitat, and correspondingly, the village development in the north is lower than in the south. Hence, we recommend conservation efforts be focused on the northern areas, though we also encourage the southern habitats to be protected from further degradation lest they degrade beyond the point of supporting any monkeys. We encourage developing a strategy that balances ecological protection and economic development in the northern region, a long-term plan for the southern region to reduce human disturbance, increase effective habitat restoration, and improve corridor design.

3.
Ecol Evol ; 9(4): 1680-1690, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847064

ABSTRACT

Using a case study of an isolated management unit of Sichuan snub-nosed monkey (Rhinopithecus roxellana), we assess the extent that climate change will impact the species' habitat distribution in the current period and projected into the 2050s. We identify refugia that could maintain the population under climate change and determine dispersal paths for movement of the population to future suitable habitats. Hubei Province, China. We identified climate refugia and potential movements by integrating bioclimatic models with circuit theory and least-cost model for the current period (1960-1990) and the 2050s (2041-2060). We coupled a maximum entropy algorithm to predict suitable habitat for the current and projected future periods. Suitable habitat areas that were identified during both time periods and that also satisfied home range and dispersal distance conditions were delineated as refugia. We mapped potential movements measured as current flow and linked current and future habitats using least-cost corridors. Our results indicate up to 1,119 km2 of currently suitable habitat within the study range. Based on our projections, a habitat loss of 67.2% due to climate change may occur by the 2050s, resulting in a reduced suitable habitat area of 406 km2 and very little new habitat. The refugia areas amounted to 286 km2 and were located in Shennongjia National Park and Badong Natural Reserve. Several connecting corridors between the current and future habitats, which are important for potential movements, were identified. Our assessment of the species predicted a trajectory of habitat loss following anticipated future climate change. We believe conservation efforts should focus on refugia and corridors when planning for future species management. This study will assist conservationists in determining high-priority regions for effective maintenance of the endangered population under climate change and will encourage increased habitat connectivity.

SELECTION OF CITATIONS
SEARCH DETAIL