Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
1.
ACS Chem Neurosci ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358890

ABSTRACT

Intrinsically disordered regions (IDRs) in proteins can undergo liquid-liquid phase separation (LLPS) for functional assembly, but this increases the chance of forming disease-associated amyloid fibrils. Not all amyloid fibrils form through LLPS however, and the importance of LLPS relative to other pathways in fibril formation remains unclear. We investigated this question in TDP-43, a motor neuron disease and dementia-causing protein that undergoes LLPS, using thioflavin T (ThT) fluorescence, NMR, transmission electron microscopy (TEM), and wide-angle X-ray scattering (WAXS) experiments. Using a fluorescence probe modified from ThT strategically designed for targeting protein assembly rather than ß-sheets and supported by TEM images, we propose that the biphasic ThT signals observed under LLPS-favoring conditions are due to the presence of amorphous aggregates. These aggregates represent an intermediate state that diverges from the direct pathway to ß-sheet-dominant fibrils. Under non-LLPS conditions in contrast (at low pH or at physiological conditions in a construct with key LLPS residues removed), the protein forms a hydrogel. Real-time WAXS data, ThT signals, and TEM images collectively demonstrate that the gelation process circumvents LLPS and yet still results in the formation of fibril-like structural networks. We suggest that the IDR of TDP-43 forms disease-causing amyloid fibrils regardless of the formation pathway. Our findings shed light on why both LLPS-promoting and LLPS-inhibiting mutants are found in TDP-43-related diseases.

2.
Arch Pathol Lab Med ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39237115

ABSTRACT

CONTEXT.­: Urothelial denudation seen in transurethral biopsy specimens may occasionally indicate the presence of discohesive high-grade urothelial carcinoma (HGUC). OBJECTIVE.­: To determine if denuded urothelial cells can be detected in the supernatants of formalin solution collected from the containers of transurethral biopsy/resection specimens after the entire tissue was submitted for histologic examination. DESIGN.­: We assessed the formalin supernatants by processing for cell block (n = 43) or ThinPrep smear (n = 57). RESULTS.­: In the cell block cohort, only 2 of 43 cases (5%) (1 pTa HGUC, 1 pT1 HGUC) showed rare urothelial cells. By contrast, in the ThinPrep method, the smear was satisfactory for evaluation in 52 of 57 cases (91%). The cytologic diagnosis of HGUC was made in the smears from 7 of 12 (58%) pTa/pT1 cases and 6 of 9 (67%) pTis cases. Remarkably, HGUC cells were detected in 2 of 5 cases (40%) with histologic diagnosis of urothelial atypia suspicious for but not diagnostic of urothelial carcinoma in situ. Additionally, in 31 cases exhibiting urothelial denudation without definitive cancer on hematoxylin-eosin-stained slides, HGUC cells (2 of 31; 6%), atypical urothelial cells (5 of 31; 16%), or benign-appearing urothelial cells (20 of 31; 65%) were present, and only 4 of 31 (13%) were unsatisfactory. CONCLUSIONS.­: Cytologic examination of ThinPrep smears from the formalin supernatants even following submission of the entire transurethral biopsy/resection specimens for histologic examination is useful for assessing denuded urothelial cells. This technique can particularly be applied to nonneoplastic cases showing extensive urothelial denudation to detect possible malignant cells and/or indeterminate cases to assist to make a more definitive diagnosis.

3.
J Cancer Res Clin Oncol ; 150(9): 419, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266868

ABSTRACT

BACKGROUND AND OBJECTIVES: Circadian rhythms, the endogenous biological clocks that govern physiological processes, have emerged as pivotal regulators in the development and progression of breast cancer. This comprehensive review delves into the intricate interplay between circadian disruption and breast tumorigenesis from multifaceted perspectives, encompassing biological rhythms, circadian gene regulation, tumor microenvironment dynamics, and genetic polymorphisms. METHODS AND RESULTS: Epidemiological evidence underscores the profound impact of external factors, such as night shift work, jet lag, dietary patterns, and exercise routines, on breast cancer risk and progression through the perturbation of circadian homeostasis. The review elucidates the distinct roles of key circadian genes, including CLOCK, BMAL1, PER, and CRY, in breast cancer biology, highlighting their therapeutic potential as molecular targets. Additionally, it investigates how circadian rhythm dysregulation shapes the tumor microenvironment, fostering epithelial-mesenchymal transition, chronic inflammation, and immunosuppression, thereby promoting tumor progression and metastasis. Furthermore, the review sheds light on the association between circadian gene polymorphisms and breast cancer susceptibility, paving the way for personalized risk assessment and tailored treatment strategies. CONCLUSIONS: Importantly, it explores innovative therapeutic modalities that harness circadian rhythms, including chronotherapy, melatonin administration, and traditional Chinese medicine interventions. Overall, this comprehensive review emphasizes the critical role of circadian rhythms in the pathogenesis of breast cancer and highlights the promising prospects for the development of circadian rhythm-based interventions to enhance treatment efficacy and improve patient outcomes.


Subject(s)
Breast Neoplasms , Circadian Rhythm , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Female , Circadian Rhythm/physiology , Circadian Rhythm/genetics
4.
J Hypertens ; 42(11): 1948-1957, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39248099

ABSTRACT

OBJECTIVE: Vascular aging, as assessed by structural and functional arterial properties, is an independent predictor of cardiovascular outcomes. In this study, we aimed to investigate the associations of ultra long-term blood pressure (BP) variability from childhood to midlife with vascular aging in midlife. METHODS: Using data from the longitudinal cohort of Hanzhong Adolescent Hypertension Study, 2065 participants aged 6-18 years were enrolled and followed up with seven visits over 30 years. Ultra long-term BP variability (BPV) was defined as the standard deviation (SD) and average real variability (ARV) of BP over 30 years (seven visits). Vascular aging included arterial stiffness, carotid hypertrophy, and carotid plaque. RESULTS: After adjusting for demographic variables, clinical characteristics and mean BP over 30 years, higher SD SBP , ARV SBP , SD DBP and ARV DBP since childhood were significantly associated with arterial stiffness in midlife. Additionally, higher SD DBP and ARV DBP were significantly associated with carotid hypertrophy and the presence of carotid plaque in midlife. When we used cumulative exposure to BP from childhood to midlife instead of mean BP as adjustment factors, results were similar. Furthermore, we found a significant association between long-term BPV from childhood to adolescence and the presence of carotid plaque, whereas long-term BPV from youth to adulthood is associated with arterial stiffness. CONCLUSION: Higher BPV from childhood to adulthood was associated with vascular aging in midlife independently of mean BP or cumulative BP exposure. Therefore, long-term BPV from an early age may serve as a predictor of cardiovascular diseases (CVDs) in later life.


Subject(s)
Aging , Blood Pressure , Humans , Male , Female , Child , Adolescent , Blood Pressure/physiology , Prospective Studies , Aging/physiology , Adult , Vascular Stiffness/physiology , Middle Aged , Longitudinal Studies , Hypertension/physiopathology , Hypertension/epidemiology , Cohort Studies
5.
J Nutr Biochem ; 135: 109762, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251145

ABSTRACT

Glucosamine (GlcN) is one of the dietary supplements used in the treatment of osteoarthritis. Endogenously, GlcN is synthesized from glucose through the hexosamine pathway. In addition to ameliorating arthritis, several biological functions of GlcN have been reported, including insulin resistance in skeletal muscle. However, the regulatory role of GlcN in skeletal muscle development is not clear. We therefore investigated the effect of GlcN on myoblast proliferation, differentiation, and myotube development and their underlying mechanisms in C2C12 cells. Myoblast proliferation was measured by MTT assay. The expressions of MyoD, myogenin (MyoG), and myosin heavy chain (MyHC) were identified as determinants of myoblast differentiation. Expressions of atrogin-1 and muscle RING-finger protein-1 (MuRF-1) were identified as markers of myotube atrophy. The results show that treatment with GlcN significantly reduced myoblast proliferation and phosphorylation of Stat3 and S6K. These findings suggest that GlcN can inhibit growth of myoblasts through inhibiting phosphorylation of Stat3 and S6K. In addition, GlcN significantly suppressed the expression of MyoD, MyoG, and MyHC, as well as myotube formation. Pretreatment of C2C12 myoblast cells with ER stress inhibitors significantly blocked GlcN-inhibited MyHC expression and myotube formation. It can be concluded that GlcN suppressed myogenic differentiation via a pathway that involved ER stress. Moreover, GlcN decreased myotube diameter and expression of MyHC, as well as increased MuRF-1 in C2C12 myotubes. Meanwhile, GlcN also reduced the expressions of phosphorylated Akt and mTOR were stimulated after GlcN treatment in C2C12 myotubes. Thus, GlcN induced skeletal muscle atrophy by inhibiting the protein synthesis pathway. Chronic GlcN infusion also caused skeletal muscle atrophy in mice. In conclusion, GlcN regulated important stages of skeletal muscle development through different signaling pathways.

6.
Article in English | MEDLINE | ID: mdl-39172608

ABSTRACT

Abstract-The need for wide-band radio frequency front ends (RFFE) with next-generation wireless protocols highlights the importance of electromechanical coupling kpff2. The hetero acoustic layered (HAL) surface acoustic wave (SAW) resonator with aluminum (Al) electrodes has shown superior performance compared to conventional SAW devices. Despite gold (Au) having excellent conductivity and stable properties, its high acoustic absorption and low phase velocity have made it less favorable for electrodes. This work demonstrates that high-performance shear horizontal (SH)-SAW resonators can be fabricated on the lithium niobate-on-insulator (LNOI) platform using a setup specifically designed for an Au electrodes. Experimental validation shows that the device achieves a high quality factor (Q) over 870, excellent keff2 up to 40%, and operates around 765 MHz. Unwanted transverse spurious modes are suppressed through adequate electrode design, and the temperature stability of LNOI SH-SAW with Au electrodes is discussed. This study highlights gold's potential as an electrode material for high keff2, clean spectrum, and wideband applications.

7.
J Clin Hypertens (Greenwich) ; 26(8): 955-963, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952049

ABSTRACT

The E-proteinoid 3 receptor (PTGER3), a member of the prostaglandin E2 (PGE2) subtype receptor, belongs to the G-protein-coupled superfamily of receptors. Animal studies have demonstrated its involvement in salt sensitivity by regulating sodium reabsorption. This study aimed to investigate the association between genetic variants of PTGER3 and salt sensitivity, longitudinal blood pressure (BP) changes, and the incidence of hypertension in Chinese adults. A chronic salt intake intervention was conducted involving 514 adults from 124 families in the 2004 Baoji Salt-Sensitivity Study Cohort in northern China. These participants followed a 3-day regular baseline diet, followed by a 7-day low-salt diet (3.0 g/d) and a 7-day high-salt diet (18 g/d), and were subsequently followed for 14 years. The findings revealed a significant relationship between the single nucleotide polymorphism (SNP) rs17482751 of PTGER3 and diastolic blood pressure (DBP) response to high salt intervention. Additionally, SNPs rs11209733, rs3765894, and rs2268062 were significantly associated with longitudinal changes in systolic blood pressure (SBP), DBP, and mean arterial pressure (MAP) during the 14-year follow-up period. SNP rs6424414 was significantly associated with longitudinal changes in DBP over 14 years. Finally, SNP rs17482751 showed a significant correlation with the incidence of hypertension over 14 years. These results emphasize the significant role of PTGER3 gene polymorphism in salt sensitivity, longitudinal BP changes, and the development of hypertension in the Chinese population.


Subject(s)
Blood Pressure , Hypertension , Polymorphism, Single Nucleotide , Receptors, Prostaglandin E, EP3 Subtype , Sodium Chloride, Dietary , Humans , Hypertension/genetics , Hypertension/epidemiology , Hypertension/physiopathology , Male , Female , China/epidemiology , Incidence , Adult , Middle Aged , Blood Pressure/genetics , Blood Pressure/physiology , Sodium Chloride, Dietary/adverse effects , Receptors, Prostaglandin E, EP3 Subtype/genetics , Longitudinal Studies , Asian People/genetics , Diet, Sodium-Restricted/methods , East Asian People
9.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062818

ABSTRACT

Exosomal microRNAs (miRNAs) from cancer cells play a key role in mediating the oral squamous cell carcinoma (OSCC) microenvironment. The objective of this study was to investigate how the long non-coding RNA (lncRNA) MEG3 affects OSCC angiogenesis through exosomal miR-421. Global miRNA microarray analysis and quantitative real-time PCR (qRT-PCR) were performed to determine the level of miRNAs in OSCC cell-derived exosomes. Cell migration, invasion, tube formation, immunohistochemistry, and hemoglobin concentrations were used to study the effects of exosomal miR-421 in angiogenesis. Western blotting was used to determine the expression level of HS2ST1 and VEGFR2-related downstream proteins. MiRNA array and qRT-PCR identified the upregulation of miR-421 in OSCC cell-derived exosomes. Furthermore, exosomal miR-421 can be taken up by human umbilical vein endothelial cells (HUVECs) and then target HS2ST1 through VEGF-mediated ERK and AKT phosphorylation, thereby promoting HUVEC migration, invasion, and tube formation. Additionally, forced expression of the lncRNA MEG3 in OSCC cells reduced exosomal miR-421 levels and then increased HS2ST1 expression, thereby reducing the VEGF/VEGFR2 pathway in HUVECs. Our results demonstrate a novel mechanism by which lncRNA MEG3 can act as a tumor suppressor and regulate endothelial angiogenesis through the exosomal miR-421/HS2ST1 axis, which provides a potential therapeutic strategy for OSCC angiogenesis.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Exosomes , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells , MicroRNAs , Mouth Neoplasms , Neovascularization, Pathologic , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Exosomes/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Cell Movement/genetics , Cell Line, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Angiogenesis
10.
Angew Chem Int Ed Engl ; 63(37): e202408321, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38926096

ABSTRACT

exo-6b2-Methyl-substituted pentabenzocorannulene (exo-PBC-Me) was synthesized by the palladium-catalyzed cyclization of 1,2,3-triaryl-1H-cyclopenta[l]phenanthrene. Its bowl-shaped geometry with an sp3 carbon atom in the backbone and a methyl group located at the convex (exo) face was verified by X-ray crystallography. According to DFT calculations, the observed conformer is energetically more favorable than the endo one by 39.9 kcal/mol. Compared to the nitrogen-doped analogs with intact π-conjugated backbones (see the main text), exo-PBC-Me displayed a deeper bowl depth (avg. 1.93 Å), redshifted and broader absorption (250-620 nm) and emission (from 585 to more than 850 nm) bands and a smaller optical HOMO-LUMO gap (2.01 eV). exo-PBC-Me formed polar crystals where all bowl-in-bowl stacking with close π ⋅ ⋅ ⋅ π contacts is arranged unidirectionally, providing the potential for applications as organic semiconductors and pyroelectric materials. This unusual structural feature, molecular packing, and properties are most likely associated with the assistance of the methyl group and the sp3 carbon atom in the backbone.

11.
Angew Chem Int Ed Engl ; 63(36): e202409281, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38837579

ABSTRACT

Balancing electrochemical activity and structural reversibility of fibrous electrodes with accelerated Faradaic charge transfer kinetics and pseudocapacitive storage are highly crucial for fiber-shaped supercapacitors (FSCs). Herein, we report novel core-shell hierarchical fibers for high-performance FSCs, in which the ordered NiCoMoS nanosheets arrays are chemically anchored on Ti3C2Tx fibers. Beneficial from architecting stable polymetallic sulfide arrays and conductive networks, the NiCoMoS-Ti3C2Tx fiber maintains fast charge transfer, low diffusion and OH- adsorption barrier, and stabilized multi-electronic reaction kinetics of polymetallic sulfide. Consequently, the NiCoMoS-Ti3C2Tx fiber exhibits a large volumetric capacitance (2472.3 F cm-3) and reversible cycling performance (20,000 cycles). In addition, the solid-state symmetric FSCs deliver a high energy density of 50.6 mWh cm-3 and bending stability, which can significantly power electronic devices and offer sensitive detection for dopamine.

12.
Adv Mater ; 36(35): e2406483, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38898699

ABSTRACT

Construction advanced fibers with high Faradic activity and conductivity are effective to realize high energy density with sufficient redox reactions for fiber-based electrochemical supercapacitors (FESCs), yet it is generally at the sacrifice of kinetics and structural stability. Here, a high-entropy doping strategy is proposed to develop high-energy-density FESCs based on high-entropy doped metal oxide@graphene fiber composite (HE-MO@GF). Due to the synergistic participation of multi-metal elements via high-entropy doping, the HE-MO@GF features abundant oxygen vacancies from introducing various low-valence metal ions, lattice distortions, and optimized electronic structure. Consequently, the HE-MO@GF maintains sufficient active sites, a low diffusion barrier, fast adsorption kinetics, improved electronic conductivity, enhanced structural stability, and Faradaic reversibility. Thereinto, HE-MO@GF presents ultra-large areal capacitance (3673.74 mF cm-2) and excellent rate performance (1446.78 mF cm-2 at 30 mA cm-2) in 6 M KOH electrolyte. The HE-MO@GF-based solid-state FESCs also deliver high energy density (132.85 µWh cm-2), good cycle performance (81.05% of capacity retention after 10,000 cycles), and robust tolerance to sweat erosion and multiple washing, which is woven into the textile to power various wearable devices (e.g., watch, badge and luminous glasses). This high-entropy strategy provides significant guidance for designing innovative fiber materials and highlights the development of next-generation wearable energy devices.

13.
J Exp Clin Cancer Res ; 43(1): 152, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812060

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICCA) is a heterogeneous group of malignant tumors characterized by high recurrence rate and poor prognosis. Heterochromatin Protein 1α (HP1α) is one of the most important nonhistone chromosomal proteins involved in transcriptional silencing via heterochromatin formation and structural maintenance. The effect of HP1α on the progression of ICCA remained unclear. METHODS: The effect on the proliferation of ICCA was detected by experiments in two cell lines and two ICCA mouse models. The interaction between HP1α and Histone Deacetylase 1 (HDAC1) was determined using Electrospray Ionization Mass Spectrometry (ESI-MS) and the binding mechanism was studied using immunoprecipitation assays (co-IP). The target gene was screened out by RNA sequencing (RNA-seq). The occupation of DNA binding proteins and histone modifications were predicted by bioinformatic methods and evaluated by Cleavage Under Targets and Tagmentation (CUT & Tag) and Chromatin immunoprecipitation (ChIP). RESULTS: HP1α was upregulated in intrahepatic cholangiocarcinoma (ICCA) tissues and regulated the proliferation of ICCA cells by inhibiting the interferon pathway in a Signal Transducer and Activator of Transcription 1 (STAT1)-dependent manner. Mechanistically, STAT1 is transcriptionally regulated by the HP1α-HDAC1 complex directly and epigenetically via promoter binding and changes in different histone modifications, as validated by high-throughput sequencing. Broad-spectrum HDAC inhibitor (HDACi) activates the interferon pathway and inhibits the proliferation of ICCA cells by downregulating HP1α and targeting the heterodimer. Broad-spectrum HDACi plus interferon preparation regimen was found to improve the antiproliferative effects and delay ICCA development in vivo and in vitro, which took advantage of basal activation as well as direct activation of the interferon pathway. HP1α participates in mediating the cellular resistance to both agents. CONCLUSIONS: HP1α-HDAC1 complex influences interferon pathway activation by directly and epigenetically regulating STAT1 in transcriptional level. The broad-spectrum HDACi plus interferon preparation regimen inhibits ICCA development, providing feasible strategies for ICCA treatment. Targeting the HP1α-HDAC1-STAT1 axis is a possible strategy for treating ICCA, especially HP1α-positive cases.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Chromobox Protein Homolog 5 , Histone Deacetylase 1 , STAT1 Transcription Factor , Animals , Female , Humans , Male , Mice , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Chromobox Protein Homolog 5/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase 1/metabolism , STAT1 Transcription Factor/metabolism
14.
Foods ; 13(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731782

ABSTRACT

In response to a global shift towards health-conscious and environmentally sustainable food choices, seaweed has emerged as a focus for researchers due to its large-scale cultivation potential and the development of bioactive substances. This research explores the potential anticancer properties of seaweed extracts, focusing on analyzing the impact of four common edible seaweeds in Taiwan on prostate cancer (PCa) cells' activity. The study used bioassay-guided fractionation to extract Cl80 from various seaweeds with androgen receptor (AR)-inhibitory activity. Cl80 demonstrated effective suppression of 5α-dihydrotestosterone (DHT)-induced AR activity in 103E cells and attenuated the growth and prostate-specific antigen (PSA) protein expression in LNCaP and 22Rv1 cells. Additionally, Cl80 exhibited differential effects on various PCa cell lines. Concentrations above 5 µg/mL significantly inhibited LNCaP cell proliferation, while 22Rv1 cells were more resistant to Cl80. PC-3 cell proliferation was inhibited at 5 µg/mL but not completely at 50 µg/mL. A clonogenic assay showed that at a concentration of 0.5 µg/mL, the colony formation in LNCaP and PC-3 cells was significantly reduced, with a dose-dependent effect. Cl80 induced apoptosis in all PCa cell types, especially in LNCaP cells, with increased apoptotic cells observed at higher concentrations. Cl80 also decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner in all PCa cell lines. Furthermore, Cl80 suppressed the migration ability of PCa cells, with significant reductions observed in LNCaP, 22Rv1, and PC-3 cells at various concentrations. These compelling findings highlight the promising therapeutic potential of C. lentillifera J.Agardh and its isolated compound Cl80 in the treatment of PCa.

15.
J Laparoendosc Adv Surg Tech A ; 34(7): 639-645, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38722056

ABSTRACT

Introduction: Urologic complications are thought to be the most common surgical complication of renal transplantation. Ureteral pathology, including stenosis, urine leak, and vesicoureteral reflux, predominates. Although endourologic and interventional radiological management may be utilized, failure rates remain relatively high and surgical reconstruction remains the definitive management. Robotic ureteral reconstruction has been demonstrated to provide patient benefit in nontransplant populations, but the literature on transplant reconstruction is very limited. This study reports an additional series of patients with a focus on surgical technique, as well as reviews the available evidence for robotic reconstruction for post-transplant ureteral complications. Methods: All institutional patients undergoing robotic-assisted reconstruction for post-transplant ureteral complications for the years 2019-2022 were included. Intra- and postoperative variables, patient demographics, and follow-up data were obtained retrospectively from parsing of patient records. Statistics were tabulated descriptively. Results: Eleven patients underwent ureteral reconstruction. Of the 11, 9 (81%) were male with a mean age of 51.9 years (16-70) and BMI of 33.8 (24.3-49.1). The most common (10/11) indication for reconstruction was stricture; the most common (10/11) technique used was Lich-Gregoir reimplantation. Mean operative time was 288 minutes (143-500). There were no intra- or immediate postoperative complications. Median length of stay was 2 days (1-22). There were two incidences of mortality at 2 and 5 months postoperatively unrelated to surgery. There were four readmissions within 30 days, three for urinary tract infection (UTI) and one for a pelvic abscess which required washout. The remainder of the cohort has been followed for a mean of 14.6 months (6-41) without any incidences of graft loss or recurrence of ureteral pathology. Conclusions: Robotic-assisted ureteral reconstruction is a technically challenging but highly feasible technique that may provide the benefits of minimally invasive surgery while still allowing definitive reconstruction. Centers with extensive robotic capabilities should consider the technique.


Subject(s)
Kidney Transplantation , Robotic Surgical Procedures , Ureteral Diseases , Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Robotic Surgical Procedures/standards , Ureter/surgery , Kidney Transplantation/adverse effects , Postoperative Complications/surgery , Treatment Outcome , Ureteral Diseases/etiology , Ureteral Diseases/surgery
16.
Gen Comp Endocrinol ; 353: 114512, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38582176

ABSTRACT

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Subject(s)
Aromatase , Brain , Pituitary Gland , Sex Differentiation , Animals , Sex Differentiation/genetics , Sex Differentiation/physiology , Male , Aromatase/genetics , Aromatase/metabolism , Female , Brain/metabolism , Pituitary Gland/metabolism , Anguilla/genetics , Anguilla/metabolism , Anguilla/growth & development , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Testis/metabolism , Gonads/metabolism , Gonads/growth & development
17.
BMC Musculoskelet Disord ; 25(1): 246, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539131

ABSTRACT

BACKGROUND: Shoulder disorders, particularly rotator cuff tears, are prevalent musculoskeletal conditions related to aging. Although the widely used suture anchor technique provides strong mechanical support to the tendon, it is associated with a risk of postoperative tendon retearing. The conventionally used titanium alloys can affect the interpretation of magnetic resonance imaging. Degradable magnesium alloys possess excellent biocompatibility, similar mechanical property to the bone, and stimulating bone formation ability from Mg2+. The purpose of this experiment was to develop innovative magnesium-based suture anchors to enhance rotator cuff repair by improving fixation materials, and to evaluate their feasibility in a goat model. METHODS: We developed fluoridized ZK60 suture anchors as the implantation material for two goats, who underwent rotator cuff repair surgery on both shoulders. Computed tomography (CT) and histological analysis were performed at 12 weeks postoperatively, and the results were compared between the magnesium and titanium alloy groups. Additionally, a hematological examination was conducted, which included assessments of red blood cells, white blood cells, platelets, coagulation function, liver function, kidney function, and magnesium ion concentration. RESULTS: The 12-week postoperative CT images showed intact MgF2 ZK60 suture anchors, effectively reconnecting the infraspinatus tendon to the humeral head. The anchors became less visible on CT scans, indicating absorption by surrounding tissues. New bone formation in the MgF2 group surpassed that in the Ti group, demonstrating superior osseointegration. The similarity between cortical bone and magnesium reduced stress-shielding and promoted bone regeneration. Histological analysis revealed successful tendon healing with MgF2 anchors, while the Ti group showed discontinuous interfaces and reduced collagen secretion. Hematological examination showed stable liver, renal function, and magnesium ion levels. CONCLUSIONS: The findings indicate that MgF2-coated suture anchors are feasible for rotator cuff repair and potentially other orthopedic applications. We hope that magnesium alloy anchors can become the solution for rotator cuff tendon repair surgery.


Subject(s)
Rotator Cuff Injuries , Shoulder , Animals , Shoulder/surgery , Rotator Cuff/diagnostic imaging , Rotator Cuff/surgery , Rotator Cuff/pathology , Suture Anchors , Magnesium , Goats , Titanium , Rotator Cuff Injuries/diagnostic imaging , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Alloys , Suture Techniques , Arthroscopy/methods
18.
Gen Comp Endocrinol ; 351: 114482, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38432348

ABSTRACT

In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17ß (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.


Subject(s)
Perciformes , Sex Determination Processes , Animals , Female , Male , Sexual Maturation , Gonads/metabolism , Perciformes/metabolism , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Fishes/metabolism , Gonadal Steroid Hormones/metabolism , Brain/metabolism , Gene Expression
19.
J Am Chem Soc ; 146(8): 5605-5613, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38351743

ABSTRACT

Carbonyl is highly accessible and acts as an essential functional group in chemical synthesis. However, the direct catalytic deoxygenative functionalization of carbonyl compounds via a putative metal carbene intermediate is a formidable challenge due to the requirement of a high activation energy for the cleavage of strong C═O double bonds. Here, we report a class of bench stable and readily available Cp*Mo(II)-complexes as efficient deoxygenation catalysts that could catalyze the direct intermolecular deoxygenative coupling of carbonyl compounds with alkynes. Enabled by this powerful Cp*Mo(II)-catalyst, various valuable heteroarenes (10 different classes) were obtained in generally good yields and remarkable chemo- and regioselectivities. Mechanistic studies suggested that this reaction might proceed via a sequence of C═O double bonds cleavage, carbene-alkyne metathesis, cyclization, and aromatization processes. This strategy not only provided a general catalytic platform for the rapid preparation of heteroarenes but also opened a new window for the applications of Cp*Mo(II)-catalysts in organic synthesis.

20.
J Radiol Prot ; 44(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38194908

ABSTRACT

Cancer is a major health challenge and causes millions of deaths worldwide each year, and the incidence of lung cancer has increased. Augmented fluoroscopic bronchoscopy (AFB) procedures, which combine bronchoscopy and fluoroscopy, are crucial for diagnosing and treating lung cancer. However, fluoroscopy exposes patients and physicians to radiation, and therefore, the procedure requires careful monitoring. The National Council on Radiation Protection and Measurement and the International Commission on Radiological Protection have emphasised the importance of monitoring patient doses and ensuring occupational radiation safety. The present study evaluated radiation doses during AFB procedures, focusing on patient skin doses, the effective dose, and the personal dose equivalent to the eye lens for physicians. Skin doses were measured using thermoluminescent dosimeters. Peak skin doses were observed on the sides of the patients' arms, particularly on the side closest to the x-ray tube. Differences in the procedures and experience of physicians between the two hospitals involved in this study were investigated. AFB procedures were conducted more efficiently at Hospital A than at Hospital B, resulting in lower effective doses. Cone-beam computed tomography (CT) contributes significantly to patient effective doses because it has higher radiographic parameters. Despite their higher radiographic parameters, AFB procedures resulted in smaller skin doses than did image-guided interventional and CT fluoroscopy procedures. The effective doses differed between the two hospitals of this study due to workflow differences, with cone-beam CT playing a dominant role. No significant differences in left and right eyeHp(3) values were observed between the hospitals. For both hospitals, theHp(3) values were below the recommended limits, indicating that radiation monitoring may not be required for AFB procedures. This study provides insights into radiation exposure during AFB procedures, concerning radiation dosimetry, and safety for patients and physicians.


Subject(s)
Lung Neoplasms , Occupational Exposure , Physicians , Radiation Exposure , Humans , Bronchoscopy , Fluoroscopy , Radiation Dosage , Lung Neoplasms/diagnostic imaging , Occupational Exposure/prevention & control , Occupational Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL