Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 671, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36162999

ABSTRACT

BACKGROUND: Xanthomonas is a genus of gram-negative bacterium containing more than 35 species. Among these pathogenic species, Xanthomonas albilineans (Xal) is of global interest, responsible for leaf scald disease in sugarcane. Another notable Xanthomonas species is Xanthomonas sachari (Xsa), a sugarcane-associated agent of chlorotic streak disease. RESULT: The virulence of 24 Xanthomonas strains was evaluated by disease index (DI) and Area Under Disease Progress Curve (AUDPC) in the susceptible inoculated plants (GT 46) and clustered into three groups of five highly potent, seven mild virulent, and twelve weak virulent strains. The highly potent strain (X. albilineans, Xal JG43) and its weak virulent related strain (X. sacchari, Xsa DD13) were sequenced, assembled, and annotated in the circular genomes. The genomic size of JG43 was smaller than that of DD13. Both strains (JG43 and DD13) lacked a Type III secretory system (T3SS) and T6SS. However, JG43 possessed Salmonella pathogenicity island-1 (SPI-1). More pathogen-host interaction (PHI) genes and virulent factors in 17 genomic islands (GIs) were detected in JG43, among which six were related to pathogenicity. Albicidin and a two-component system associated with virulence were also detected in JG43. Furthermore, 23 Xanthomonas strains were sequenced and classified into three categories based on Single Nucleotide Polymorphism (SNP) mutation loci and pathogenicity, using JG43 as a reference genome. Transitions were dominant SNP mutations, while structural variation (SV) is frequent intrachromosomal rearrangement (ITX). Two essential genes (rpfC/rpfG) of the two-component system and another gene related to SNP were mutated to understand their virulence effect. The mutation of rpfG resulted in a decrease in pathogenicity. CONCLUSION: These findings revealed virulence of 24 Xanthomonas strains and variations by 23 Xanthomonas strains. We sequenced, assembled, and annotated the circular genomes of Xal JG43 and Xsa DD13, identifying diversity detected by pathogenic factors and systems. Furthermore, complete genomic sequences and sequenced data will provide a theoretical basis for identifying pathogenic factors responsible for sugarcane leaf scald disease.


Subject(s)
Saccharum , Xanthomonas , Plant Diseases/microbiology , Plant Leaves/genetics , Saccharum/microbiology , Virulence/genetics , Virulence Factors/genetics , Xanthomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...