Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Adv Mater ; 36(3): e2305374, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37652460

ABSTRACT

Extracellular vesicles (EVs) have inherent advantages over cell-based therapies in regenerative medicine because of their cargos of abundant bioactive cues. Several strategies are proposed to tune EVs production in vitro. However, it remains a challenge for manipulation of EVs production in vivo, which poses significant difficulties for EVs-based therapies that aim to promote tissue regeneration, particularly for long-term treatment of diseases like peripheral neuropathy. Herein, a superparamagnetic nanocomposite scaffold capable of controlling EVs production on-demand is constructed by incorporating polyethyleneglycol/polyethyleneimine modified superparamagnetic nanoparticles into a polyacrylamide/hyaluronic acid double-network hydrogel (Mag-gel). The Mag-gel is highly sensitive to a rotating magnetic field (RMF), and can act as mechano-stimulative platform to exert micro/nanoscale forces on encapsulated Schwann cells (SCs), an essential glial cell in supporting nerve regeneration. By switching the ON/OFF state of the RMF, the Mag-gel can scale up local production of SCs-derived EVs (SCs-EVs) both in vitro and in vivo. Further transcriptome sequencing indicates an enrichment of transcripts favorable in axon growth, angiogenesis, and inflammatory regulation of SCs-EVs in the Mag-gel with RMF, which ultimately results in optimized nerve repair in vivo. Overall, this research provides a noninvasive and remotely time-scheduled method for fine-tuning EVs-based therapies to accelerate tissue regeneration, including that of peripheral nerves.


Subject(s)
Extracellular Vesicles , Peripheral Nerves , Schwann Cells/physiology , Nerve Regeneration/physiology , Magnetic Iron Oxide Nanoparticles
2.
Adv Sci (Weinh) ; 10(32): e2304487, 2023 11.
Article in English | MEDLINE | ID: mdl-37789583

ABSTRACT

Addressing the challenge of promoting directional axonal regeneration in a hostile astrocytic scar, which often impedes recovery following spinal cord injury (SCI), remains a daunting task. Cell transplantation is a promising strategy to facilitate nerve restoration in SCI. In this research, a pro-regeneration system is developed, namely miR-26a@SPIONs-OECs, for olfactory ensheathing cells (OECs), a preferred choice for promoting nerve regeneration in SCI patients. These entities show high responsiveness to external magnetic fields (MF), leading to synergistic multimodal cues to enhance nerve regeneration. First, an MF stimulates miR-26a@SPIONs-OECs to release extracellular vesicles (EVs) rich in miR-26a. This encourages axon growth by inhibiting PTEN and GSK-3ß signaling pathways in neurons. Second, miR-26a@SPIONs-OECs exhibit a tendency to migrate and orientate along the direction of the MF, thereby potentially facilitating neuronal reconnection through directional neurite elongation. Third, miR-26a-enriched EVs from miR-26a@SPIONs-OECs can interact with host astrocytes, thereby diminishing inhibitory cues for neurite growth. In a rat model of SCI, the miR-26a@SPIONs-OECs system led to significantly improved morphological and motor function recovery. In summary, the miR-26a@SPIONS-OECs pro-regeneration system offers innovative insights into engineering exogenous cells with multiple additional cues, augmenting their efficacy for stimulating and guiding nerve regeneration within a hostile astrocytic scar in SCI.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Rats , Humans , Animals , Astrocytes/metabolism , Cicatrix/pathology , Axon Guidance , Glycogen Synthase Kinase 3 beta/metabolism , Nerve Regeneration/physiology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Magnetic Phenomena , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Genes (Basel) ; 14(2)2023 02 20.
Article in English | MEDLINE | ID: mdl-36833455

ABSTRACT

Wild peanut species Arachis correntina (A. correntina) had a higher continuous cropping tolerance than peanut cultivars, closely correlating with the regulatory effects of its root exudates on soil microorganisms. To reveal the resistance mechanism of A. correntina to pathogens, we adopted transcriptomic and metabolomics approaches to analyze differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) between A. correntina and peanut cultivar Guihua85 (GH85) under hydroponic conditions. Interaction experiments of peanut root exudates with Ralstonia solanacearum (R. solanacearum) and Fusarium moniliforme (F. moniliforme) were carried out in this study. The result of transcriptome and metabolomics association analysis showed that there were fewer up-regulated DEGs and DEMs in A. correntina compared with GH85, which were closely associated with the metabolism of amino acids and phenolic acids. Root exudates of GH85 had stronger effects on promoting the growth of R. solanacearum and F. moniliforme than those of A. correntina under 1 and 5 percent volume (1% and 5%) of root exudates treatments. Thirty percent volume (30%) of A. correntina and GH85 root exudates significantly inhibited the growth of two pathogens. The exogenous amino acids and phenolic acids influenced R. solanacearum and F. moniliforme showing concentration effects from growth promotion to inhibition as with the root exudates. In conclusion, the greater resilience of A. correntina) to changes in metabolic pathways for amino acids and phenolic acids might aid in the repression of pathogenic bacteria and fungi.


Subject(s)
Arachis , Ralstonia solanacearum , Arachis/genetics , Amino Acids/genetics , Exudates and Transudates , Genotype
4.
Front Immunol ; 14: 1068359, 2023.
Article in English | MEDLINE | ID: mdl-36742334

ABSTRACT

Background: In secondary spinal cord injury (SCI), the immune microenvironment of the injured spinal cord plays an important role in spinal regeneration. Among the immune microenvironment components, macrophages/microglia play a dual role of pro-inflammation and anti-inflammation in the subacute stage of SCI. Therefore, discovering the immune hub genes and targeted therapeutic drugs of macrophages/microglia after SCI has crucial implications in neuroregeneration. This study aimed to identify immune hub genes and targeted therapeutic drugs for the subacute phase of SCI. Methods: Bulk RNA sequencing (bulk-RNA seq) datasets (GSE5296 and GSE47681) and single-cell RNA sequencing (scRNA-seq) dataset (GSE189070) were obtained from the Gene Expression Omnibus database. In the bulk RNA-seq, the R package 'limma,' 'WGCNA,' and 'CIBERSORT' were used to jointly screen key immune genes. Subsequently, the R package 'Seurat' and the R package 'celldex' were used to divide and annotate the cell clusters, respectively. After using the Autodock software to dock immune hub genes and drugs that may be combined, the effectiveness of the drug was verified using an in vivo experiment with the T9 SCI mouse model. Results: In the bulk-RNA seq, B2m, Itgb5, and Vav1 were identified as immune hub genes. Ten cell clusters were identified in scRNA-seq, and B2m and Itgb5 were mainly located in the microglia, while Vav1 was mainly located in macrophages. Molecular docking results showed that the proteins corresponding to these immune genes could accurately bind to decitabine. In decitabine-treated mice, the pro-inflammatory factor (TNF-α, IL-1ß) levels were decreased while anti-inflammatory factor (IL-4, IL-10) levels were increased at 2 weeks post-SCI, and macrophages/microglia transformed from M1 to M2. At 6 weeks post-SCI, the neurological function score and electromyography of the decitabine treatment group were also improved. Conclusion: In the subacute phase of SCI, B2m, Itgb5, and Vav1 in macrophages/microglia may be key therapeutic targets to promote nerve regeneration. In addition, low-dose decitabine may promote spinal cord regeneration by regulating the polarization state of macrophages/microglia.


Subject(s)
Decitabine , Macrophages , Spinal Cord Injuries , Animals , Mice , Decitabine/therapeutic use , Macrophages/metabolism , Molecular Docking Simulation , RNA-Seq , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/genetics , Spinal Cord Injuries/complications
5.
BMJ Open ; 13(1): e060166, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627155

ABSTRACT

OBJECTIVE: To investigate the effect of continuous positive airway pressure (CPAP) treatment on cognitive function in stroke patients with obstructive sleep apnoea (OSA) by exploring randomised controlled trials (RCTs). METHODS: Published RCTs that assessed the therapeutic effects of CPAP on cognition in stroke patients with OSA, compared with controls or sham CPAP, were included. Electronic databases, including MEDLINE, Embase and Cochrane library, were searched in October 2020 and October 2021. Risk of bias was assessed using the Cochrane collaboration tools. A random effects or fixed effects model was used according to heterogeneity. The outcomes were global cognitive gain, improvement in cognitive domain and subjective sleepiness. RESULTS: 7 RCTs, including 327 participants, comparing CPAP with control or sham CPAP treatment were included. 6 RCTs with 270 participants reported results related to global cognition, and CPAP treatment had no significant effects on global cognitive gain in stroke patients with OSA (standardised mean difference (SMD), 0.18; 95% CI, -0.07 to 0.42; p=0.153). A subgroup analysis showed that an early start to (<2 weeks post stroke) CPAP treatment after stroke significantly improved global cognition (SMD, 0.66; 95% CI, 0.18 to 1.14; p=0.007), which was not found in the case of a delayed start to CPAP treatment. However, CPAP did not significantly help with memory, language, attention or executive function. Moreover, CPAP therapy significantly alleviated subjective sleepiness (SMD, -0.73; 95% CI, -1.15 to -0.32; p≤0.001). CONCLUSIONS: Early initiation of CPAP treatment might contribute to improvement in global cognition in stroke patients with OSA. This study had the following limitations: the sample size in each included study was relatively small; the scales related to cognitive assessment or subjective sleepiness were inconsistent; and the methodological quality was not high. Future trials should focus on including a greater number of stroke patients with OSA undergoing CPAP treatment. PROSPERO REGISTRATION NUMBER: CRD42020214709.


Subject(s)
Cognition , Continuous Positive Airway Pressure , Sleep Apnea, Obstructive , Stroke , Humans , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/therapy , Sleepiness , Randomized Controlled Trials as Topic , Stroke/complications , Stroke/psychology , Treatment Outcome
6.
Mater Today Bio ; 18: 100535, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36654965

ABSTRACT

The repair of annulus fibrosus (AF) defect after discectomy in the intervertebral disc (IVD) has presented a challenge over the past decade. Hostile microenvironments in the IVD, including, compression and hypoxia, are critical issues that require special attention. Till date, little information is available on potential strategies to cope with the hypoxia dilemma in AF defect sites. In this study, perfluorotributylamine (PFTBA) core-shell fibers were fabricated by coaxial electrospinning to construct oxygen-releasing scaffold for promoting endogenous repair in the AF after discectomy. We demonstrated that PFTBA fibers (10% chitosan, chitosan: PCL, 1:6) could release oxygen for up to 144 â€‹h. The oxygen released from PFTBA fibers was found to protect annulus fibrosus stem cells (AFSCs) from hypoxia-induced apoptosis. In addition, the PFTBA fibers were able to promote proliferation, migration and extracellular matrix (ECM) production in AFSCs under hypoxia, highlighting their therapeutic potential in AF defect repair. Subsequent in vivo studies demonstrated that oxygen-supplying fibers were capable of ameliorating disc degeneration after discectomy, which was evidenced by improved disc height and morphological integrity in rats with the oxygen-releasing scaffolds. Further transcriptome analysis indicated that differential expression genes (DEGs) were enriched in "oxygen transport" and "angiogenesis", which likely contributed to their beneficial effect on endogenous AF regeneration. In summary, the oxygen-releasing scaffold provides novel insights into the oxygen regulation by bioactive materials and raises the therapeutic possibility of oxygen supply strategies for defect repair in AF, as well as other aerobic tissues.

7.
Appl Neuropsychol Adult ; : 1-6, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36657421

ABSTRACT

We aimed to explore the changes in post-operative cognitive dysfunction (POCD) after gastrointestinal endoscopic treatment using detailed neuropsychological assessments. Patients hospitalized for gastrointestinal endoscopic polypectomy were recruited for neuropsychological evaluations, which included the Chinese version of the Mini-Mental State Examination (MMSE), Auditory-Verbal Learning Test, Digit Span Test (DST), Trail Making Task (TMT), Verbal Fluency Test, Clock Drawing Test, and Stroop test. Cognitive assessments were performed twice: one day before and 24 h after treatment. Healthy control subjects participated in the neuropsychological assessment during the same intervals. Detailed cognitive assessments were performed for 40 patients and 60 control subjects. Based on the Z scores, the incidence of POCD 24 h after gastrointestinal endoscopic treatment was 20%. Patients with POCD had significant impairment in the post-operative MMSE, forward DST, TMT, and Stroop interference effect correct count tests (all p < 0.05). Our preliminary results showed that patients were not fully recovered, and 20% had impairment in multiple cognitive assessments 24 h after a gastrointestinal endoscopy. As attention was affected, safety while discharging those patients should be a concern.

8.
Front Plant Sci ; 13: 1018727, 2022.
Article in English | MEDLINE | ID: mdl-36531399

ABSTRACT

Intercropping systems have been studied as a sustainable agricultural planting pattern to increase soil quality and crop yields. However, the relationships between metabolites and soil physicochemical properties remain poorly understood under sugarcane/peanut intercropping system. Thus, we determined the rhizosphere soil physicochemical properties, and analyzed rhizosphere soil metabolites and root metabolites by metabolomics method under monoculture and intercropping patterns of sugarcane and peanut. The results showed that pH, the contents of total phosphorus (P), total potassium (K), available nitrogen (N), available phosphorus (P), and available potassium (K) were higher in rhizosphere soil of intercropping peanut than monoculture peanut, and the content of total P was higher in rhizosphere soil of intercropping sugarcane than monoculture sugarcane. Sugarcane/peanut intercropping also significantly increased the activities of acid phosphatase and urease in rhizosphere soil. The metabolomics results showed that 32 metabolites, mainly organic acids and their derivatives (25.00%), nucleotides and their metabolites (18.75%), were detected in root and rhizosphere soil samples. In the MP-S (rhizosphere soil of monoculture peanut) vs. IP-S (rhizosphere soil of intercropping peanut) comparison, 47 differential metabolites (42 upregulated) were screened, including glycerolipids (19.15%), organic acids and their derivatives (17.89%), and amino acids and their metabolites (12.77%). In the MS-S (rhizosphere soil of monoculture sugarcane) vs. IS-S (rhizosphere soil of intercropping sugarcane) comparison, 51 differential metabolites (26 upregulated) were screened, including heterocyclic compounds (15.69%), glycerolipids (11.76%), and organic acids and their derivatives (9.80%). The metabolite species from MP-S, MS-S, IP-S, and IS-S were similar, but some metabolite contents were significantly different, such as adenine, adenosine, maltotriose, thermozeaxanthin-13 and PE-NMe (20:0/24:0). Adenine and adenosine were detected in root and rhizosphere soils, and their levels were increased in the intercropping treatment, which were mainly related to enhanced purine metabolism in root and rhizosphere soils under the sugarcane/peanut intercropping system. Importantly, adenine and adenosine were significantly positively correlated with total P and total K contents, acid phosphatase and urease activities, and pH. This study clarified that the sugarcane/peanut intercropping system could improve soil nutrients and enzymes and was related to purine metabolism.

9.
Front Pharmacol ; 13: 1035143, 2022.
Article in English | MEDLINE | ID: mdl-36419629

ABSTRACT

Inflammation following nerve injury and surgery often causes peripheral nerve adhesion (PNA) to the surrounding tissue. Numerous investigations independently examined the prevention or inhibition of PNA, however, an intervention targeting macrophages has not been fully elucidated. Basement membrane (BM) genes are known to modulate central nervous system (CNS) inflammation, however, their activities in the peripheral nervous system (PNS) remains undiscovered. In this report, we carried out weighted correlation network analysis (WCNA) to screen for principal sciatic nerve injury (SNI) module genes. Once an association between the module and BM genes was established, the protein-protein interaction (PPI) and immune infiltration analyses were employed to screen for relevant BM-related immune genes (Itgam, SDC1, Egflam, and CD44) in SNI. Subsequently, using the Drug SIGnatures (DSigDB) database and molecular docking, we demonstrated that Trichostatin A (TSA) interacted with key immune genes. TSA is known to enhance M2 macrophage expression and attenuate fibrosis. Nevertheless, the significance of the epigenetic modulation of macrophage phenotypes in dorsal root ganglion (DRG) is undetermined after SNI. In this article, we examined the TSA role in fibrogenesis and macrophage plasticity associated with DRG. We revealed that TSA enhanced M2 macrophage aggregation, inhibited fibroblast activation, and improved sciatic nerve regeneration (SNR) and sensory functional recovery (FR) after SNI. In addition, TSA suppressed M1 macrophages and enhanced M2 macrophage invasion within the DRG tissue. Furthermore, TSA dramatically reduced IL-1ß and TNFα levels, while upregulating IL-10 level. In summary, this research revealed for the first time that TSA alleviates fibrosis in DRG by promoting an M1 to M2 macrophage transition, which, in turn, accelerates SNR.

10.
J Oncol ; 2022: 9461054, 2022.
Article in English | MEDLINE | ID: mdl-35186081

ABSTRACT

BACKGROUND: In recent years, the abnormal expression of circRNAs has been identified to be strongly associated with tumor tissues. In this study, we focused on circACVR2A with a remarkably upregulated expression in gastric tissues and further explored its role in the pathogenic progression of gastric cancer (GC). METHODS: The differentially expressed circACVR2A in GC tissues and four cell lines (MKN-45, SNU-1, HGC-27, and SGC-7901) was identified by qRT-PCR method. Then, the effect of circACVR2A and miR-1290 on HGC-27 cell proliferation was measured by CCK8 and the colony formation methods. The effect of circACVR2A and miR-1290 on HGC-27 cell metastasis was estimated by transwell assay. The interaction of circACVR2A and miR-1290 was further detected. RESULTS: The relative level of circACVR2A in GC tissues and cell lines is remarkably upregulated. The downregulation of circACVR2A promotes GC cell proliferation and metastasis and suppressed the expression level of E-cadherin and Vimentin. The miR-1290 inhibitor reversed the effect of circACVR2A on cell progression in GC cell. CONCLUSION: circACVR2A competitively sponged miR-1290 and was exerted as a tumor suppressor gene oncogene via a circACVR2A/miR-1290 axis, suggesting it as a possible biomarker for GC therapy.

11.
Front Cell Dev Biol ; 9: 779373, 2021.
Article in English | MEDLINE | ID: mdl-34869383

ABSTRACT

The quiescence, activation, and subsequent neurogenesis of neural stem cells (NSCs) play essential roles in the physiological homeostasis and pathological repair of the central nervous system. Previous studies indicate that transmembrane protein Ttyh1 is required for the stemness of NSCs, whereas the exact functions in vivo and precise mechanisms are still waiting to be elucidated. By constructing Ttyh1-promoter driven reporter mice, we determined the specific expression of Ttyh1 in quiescent NSCs and niche astrocytes. Further evaluations on Ttyh1 knockout mice revealed that Ttyh1 ablation leads to activated neurogenesis and enhanced spatial learning and memory in adult mice (6-8 weeks). Correspondingly, Ttyh1 deficiency results in accelerated exhaustion of NSC pool and impaired neurogenesis in aged mice (12 months). By RNA-sequencing, bioinformatics and molecular biological analysis, we found that Ttyh1 is involved in the regulation of calcium signaling in NSCs, and transcription factor NFATc3 is a critical effector in quiescence versus cell cycle entry regulated by Ttyh1. Our research uncovered new endogenous mechanisms that regulate quiescence versus activation of NSCs, therefore provide novel targets for the intervention to activate quiescent NSCs to participate in injury repair during pathology and aging.

12.
BMC Infect Dis ; 21(1): 1245, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903183

ABSTRACT

BACKGROUND: Patients with primary brain abscess often present with atypical symptoms, and the outcome varies. We investigated the demographic, laboratory, and neuroimaging features of patients with brain abscess at our hospital and identified factors associated with their outcomes. METHODS: We retrospectively collected the data of patients diagnosed with primary brain abscess at our hospital between January 2011 and December 2020. Their clinical characteristics, predisposing factors, laboratory and neuroimaging findings, treatment, and outcome were analyzed. RESULTS: Of the 57 patients diagnosed with primary abscess, 51 (89.47%) were older than 40 years, and 42 (73.68%) were male. Only eight patients (14.04%) showed the classical triad of headache, fever, and focal neurological deficit. Fifteen patients (26.31%) had comorbidities, of which diabetes mellitus was the most common. Positive intracranial purulent material cultures were obtained in 46.15% of the patients, and gram-negative enteric bacteria were found in 33.33% of them, with Klebsiella pneumoniae being the most frequently observed. Surgical treatment, most commonly in the form of stereotactic drainage, was received by 54.39% of the patients. Good outcomes were achieved in 75.44% of the patients. Multivariate logistic regression analysis showed that patients with headaches were more likely to have a poor outcome (odds ratio 6.010, 95% confidence interval 1.114-32.407, p = 0.037). CONCLUSIONS: Male patients and those older than 40 years were more susceptible to brain abscess than female patients and those younger than 40 years, respectively. Only a few patients showed the classical triad of clinical symptoms. Diabetes mellitus was the most common comorbidity. Positive intracranial specimens' culture results were uncommon, with gram-negative enteric bacteria, especially Klebsiella pneumoniae, being the main organisms found. Most patients had a good outcome, and the presence of headache may influence the outcome.


Subject(s)
Brain Abscess , Klebsiella pneumoniae , Brain Abscess/drug therapy , Brain Abscess/epidemiology , Comorbidity , Female , Humans , Male , Odds Ratio , Retrospective Studies
13.
PeerJ ; 9: e10880, 2021.
Article in English | MEDLINE | ID: mdl-33628642

ABSTRACT

BACKGROUND: The sugarcane/peanut intercropping system is a specific and efficient cropping pattern in South China. Intercropping systems change the bacterial diversity of soils and decrease disease rates. It can not only utilized light, heat, water and land resources efficiently, but also increased yield and economic benefits of farmers. METHODS: We determined soil nutrients, enzymes and microbes in sugarcane/peanut intercropping system, and analyzed relevance of the soil physicochemical properties and the genes involved in N and P cycling and organic matter turnover by metagenome sequencing. RESULTS: The results showed that sugarcane/peanut intercropping significantly boosted the content of total nitrogen, available phosphorus, total potassium, organic matter, pH value and bacteria and enhanced the activity of acid phosphatase compared to monocropping. Especially the content of available nitrogen, available phosphorus and organic matter increased significantly by 20.1%, 65.3% and 56.0% in root zone soil of IP2 treatment than monocropping treatment. The content of available potassium and microbial biomass carbon, as well as the activity of catalase, sucrase and protease, significantly decreased in intercropping root zone soil. Intercropping resulted in a significant increase by 7.8%, 16.2% and 23.0% in IS, IP1 and IP2, respectively, of the acid phosphatase content relative to MS. Metagenomic analysis showed that the pathways involved in carbohydrate and amino acid metabolism were dominant and more abundant in intercropping than in monocropping. Moreover, the relative abundances of genes related to N cycling (glnA, GLUD1_2, nirK), P cycling (phoR, phoB) and organic matter turnover (PRDX2_4) were higher in the intercropping soil than in the monocropping soil. The relative abundance of GLUD1_2 and phoR were 25.5% and 13.8% higher in the IP2 treatment respectively,and bgIX was higher in IS treatment compared to the monocropping treatment. Genes that were significantly related to phosphorus metabolism and nitrogen metabolism (TREH, katE, gudB) were more abundant in intercropping than in monocropping. CONCLUSION: The results of this study indicate that the intercropping system changed the numbers of microbes as well as enzymes activities, and subsequently regulate genes involved in N cycling, P cycling and organic matter turnover. Finally, it leads to the increase of nutrients in root zone soil and improved the soil environment.

14.
J Basic Microbiol ; 61(2): 165-176, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33448033

ABSTRACT

Sugarcane/peanut intercropping is a highly efficient planting pattern in South China. However, the effects of sugarcane/peanut intercropping on soil quality need to be clarified. This study characterized the soil microbial community and the soil quality in sugarcane/peanut intercropping systems by the Illumina MiSeq platform. The results showed that the intercropping sugarcane (IS) system significantly increased the total N (TN), available N (AN), available P (AP), pH value, and acid phosphatase activity (ACP), but it had little effect on the total P (TP), total K (TK), available K (AK), organic matter (OM), urease activity, protease activity, catalase activity, and sucrase activity, compared with those in monocropping sugarcane (MS) and monocropping peanut (MP) systems. Both intercropping peanut (IP) and IS soils contained more bacteria and fungi than soils in the MP and MS fields, and the microbes identified were mainly Chloroflexi and Acidobacteria, respectively. Intercropping significantly increased the number of unique microbes in IS soils (68 genera), compared with the numbers in the IP (14), MS (17), and MP (16) systems. The redundancy analysis revealed that the abundances of culturable Acidobacteriaceae subgroup 1, nonculturable DA111, and culturable Acidobacteria were positively correlated with the measured soil quality in the intercropping system. Furthermore, the sugarcane/peanut intercropping significantly increased the economic benefit by 87.84% and 36.38%, as compared with that of the MP and MS, respectively. These results suggest that peanut and sugarcane intercropping increases the available N and P content by increasing the abundance of rhizospheric microbes, especially Acidobacteriaceae subgroup 1, DA111, and Acidobacteria.


Subject(s)
Agriculture/methods , Arachis/growth & development , Saccharum/growth & development , Soil Microbiology , Soil/chemistry , Acid Phosphatase/analysis , Agriculture/economics , Arachis/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Hydrogen-Ion Concentration , Microbiota , Nitrogen/analysis , Phosphates/analysis , Saccharum/microbiology
15.
Neurosci Bull ; 37(4): 478-496, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33355899

ABSTRACT

Tweety-homolog 1 (Ttyh1) is expressed in neural tissue and has been implicated in the generation of several brain diseases. However, its functional significance in pain processing is not understood. By disrupting the gene encoding Ttyh1, we found a loss of Ttyh1 in nociceptors and their central terminals in Ttyh1-deficient mice, along with a reduction in nociceptor excitability and synaptic transmission at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) in the basal state. More importantly, the peripheral inflammation-evoked nociceptor hyperexcitability and spinal synaptic potentiation recorded in spinal-PAG projection neurons were compromised in Ttyh1-deficient mice. Analysis of the paired-pulse ratio and miniature excitatory postsynaptic currents indicated a role of presynaptic Ttyh1 from spinal nociceptor terminals in the regulation of neurotransmitter release. Interfering with Ttyh1 specifically in nociceptors produces a comparable pain relief. Thus, in this study we demonstrated that Ttyh1 is a critical determinant of acute nociception and pain sensitization caused by peripheral inflammation.


Subject(s)
Nociceptors , Synaptic Transmission , Animals , Membrane Proteins/metabolism , Mice , Neurons/metabolism , Pain , Periaqueductal Gray
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118837, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32866804

ABSTRACT

Lanzhou lily is a famous lily variety in China, which has many advantages different from other lily varieties. It is rich in nutrients and can be used as medicine or food. The present study is performed to evaluate the quality of Lanzhou lily by Raman spectroscopy. Here, Raman spectra of lily bulbs were collected by confocal Raman microscopy. Through study of a variety of samples, we found that Raman peaks of several important nutrients including starch, sucrose and amino acids were clearly observed from scales of lily bulb, while strong characteristic peaks of ferulic acid were observed at the epidermis of the same scale due to the stimulation of the external environment. We also compared lily bulbs with various sizes and shapes using an average Raman spectrum of selected area. Then, changes of nutrients were quantitively analyzed in different storage period. The results show that the nutrient components including starch, sucrose, amino acids and ferulic acid can be evaluated by Raman spectroscopy. Then the quality of Lanzhou lily can be evaluated by Raman spectroscopy. This is valuable for quality evaluation of lily using non-destructive methods.


Subject(s)
Lilium , China , Microscopy , Microscopy, Confocal , Plant Roots , Spectrum Analysis, Raman
17.
Front Aging Neurosci ; 12: 162, 2020.
Article in English | MEDLINE | ID: mdl-32581772

ABSTRACT

Mobile phone use has rapidly increased worldwide, and pregnant women are passively or actively exposed to the associated electromagnetic radiation. Maternal cell phone exposure is related to behavioral difficulties in young offspring. However, whether prenatal mobile phone exposure can predispose the elderly offspring to cognitive impairment is unclear. The enriched environment (EE) has shown positive effects on cognition in an immature brain, but its impact on aging offspring after prenatal cell phone exposure is unknown. This study aimed to investigate whether prenatal exposure to mobile phone exerts long-term effects on cognition in elderly rat offspring and whether EE during adulthood can rescue cognitive impairment by altering the synaptic plasticity. Pregnant rats were subjected to prenatal short-term or long-term cell phone exposure and offspring rats were randomly assigned to standard or EE. Spatial learning and memory were investigated using Morris water maze (MWM) in elderly rat offspring. Hippocampal cellular morphology was assessed by hematoxylin-eosin staining and synaptic ultrastructure was evaluated with transmission electron microscopy. Expression of synaptophysin (SYN), postsynaptic density-95 (PSD-95), and brain-derived neurotrophic factor (BDNF) were detected by western blot. The results demonstrated that prenatal long-term but not short-term exposure to mobile phone lead to cognitive impairment, morphological changes in the hippocampal cells, reduced synaptic number, decreased SYN, PSD-95, and BDNF expression in elderly offspring, which were alleviated by postnatal EE housing. These findings suggest that prenatal long-term mobile phone exposure may pose life-long adverse effects on elderly offspring and impair cognition by disrupting the synaptic plasticity, which may be reversed by postnatal EE housing.

18.
BMC Biotechnol ; 20(1): 13, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111197

ABSTRACT

BACKGROUND: Intercropping, an essential cultivation pattern in modern agricultural systems, increases crop yields and soil quality. Cassava and peanut intercropping systems exhibit advantages in solar utilization and cadmium absorption, etc. However, the inner mechanisms need to be elucidated. In this study, Illumina MiSeq platform was used to reveal the rhizospheric microbes and soil quality in cassava/peanut intercropping systems, and the results provided a reference for the application of this method in studying other intercropping systems. RESULTS: Both intercropping cassava/peanut (IP) and intercropping peanut/cassava (IC) systems significantly increased available N, available K, pH value, and urease activity, comparing with that in monocropping cassava (MC) and monocropping peanut (MP) system. However, there were few effects on the total N, total P, total K, available P, organic matter, protease activity, catalase activity, sucrase activity, and acid phosphatase activity. Both IP and MP soils contained more bacteria and fungi than those in the IC and MC soils, which were mainly made of Proteobacteria and Actinobacteria. Intercropping remarkably increased the number of Nitrospirae in IP and IC soils comparing those in MC and MP soils. Redundancy analysis (RDA) revealed that the abundances of DA101, Pilimelia, and Ramlibacter were positively correlated to the soil quality. These results suggest that intercropping enhances the available nitrogen content of soil through increasing the quantity of rhizospheric microbes, especially that of DA101 and Pilimelia. CONCLUSIONS: The cassava/peanut intercropping system improves soil quality through increasing the available nitrogen content and abundance of DA101, Pilimelia, and Ramlibacter in the soil.


Subject(s)
Agriculture/methods , Arachis/growth & development , Bacteria/classification , Fungi/classification , Manihot/growth & development , Nitrogen/metabolism , Bacteria/growth & development , Bacteria/isolation & purification , Crops, Agricultural/growth & development , Fungi/growth & development , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Phylogeny , Potassium/metabolism , Rhizosphere , Sequence Analysis, DNA , Soil/chemistry , Soil Microbiology
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117483, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31493713

ABSTRACT

Heavy metal pollution has become an important issue threatening human health and the liver is a very important metabolic organ. Here, we use label-free Raman confocal imaging to study the alterations of the liver tissue after cadmium pollution. Raman imaging has been performed on 100µmx100µm liver tissues to study the distribution of important macromolecules and the average Raman spectrum of the entire region has been used to characterize and quantize the change of biochemical compositions in liver tissue. The poisoned livers displayed a significant decrease in the intensity of 748 cm-1, 1128 cm-1 and 1585 cm-1 bands of cytochrome C, in comparison to the control. The collagen peak at 1082 cm-1 is significantly higher than that of control, suggesting the increasing fibrosis of Cd liver tissues. To confirm the results, we selected a 30µmx15µm liver cell area for high-resolution Raman imaging. We observed a substantial increase of lipids and proteins at specific points of hepatocytes. The confocal Raman imaging of liver tissues provided a unique tool to better understand disease-induced changes in the biochemical phenotype of primary liver tissues. Our study provides valuable references as in vitro models for studying Cd accumulation and toxicity in human liver.


Subject(s)
Cadmium Poisoning/metabolism , Liver/drug effects , Liver/metabolism , Spectrum Analysis, Raman/methods , Animals , Cadmium Poisoning/pathology , Disease Models, Animal , Humans , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods
20.
Cell Death Dis ; 10(12): 869, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31740664

ABSTRACT

Extracellular vesicles (EVs) including exosomes can serve as mediators of cell-cell communication under physiological and pathological conditions. However, cargo molecules carried by EVs to exert their functions, as well as mechanisms for their regulated release and intake, have been poorly understood. In this study, we examined the effects of endothelial cells-derived EVs on neurons suffering from oxygen-glucose deprivation (OGD), which mimics neuronal ischemia-reperfusion injury in human diseases. In a human umbilical endothelial cell (HUVEC)-neuron coculture assay, we found that HUVECs reduced apoptosis of neurons under OGD, and this effect was compromised by GW4869, a blocker of exosome release. Purified EVs could be internalized by neurons and alleviate neuronal apoptosis under OGD. A miRNA, miR-1290, was highly enriched in HUVECs-derived EVs and was responsible for EV-mediated neuronal protection under OGD. Interestingly, we found that OGD enhanced intake of EVs by neurons cultured in vitro. We examined the expression of several potential receptors for EV intake and found that caveolin-1 (Cav-1) was upregulated in OGD-treated neurons and mice suffering from middle cerebral artery occlusion (MCAO). Knock-down of Cav-1 in neurons reduced EV intake, and canceled EV-mediated neuronal protection under OGD. HUVEC-derived EVs alleviated MCAO-induced neuronal apoptosis in vivo. These findings suggested that ischemia likely upregulates Cav-1 expression in neurons to increase EV intake, which protects neurons by attenuating apoptosis via miR-1290.


Subject(s)
Caveolin 1/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Animals , Apoptosis , Humans , Male , Mice , Mice, Inbred C57BL , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...