Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Anal Chem ; 96(12): 4825-4834, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38364099

ABSTRACT

Immunochromatographic assays (ICAs) have been widely used in the field detection of mycotoxin contaminants. Nevertheless, the lack of multisignal readout capability and the ability of signaling tags to maintain their biological activity while efficiently loading antibodies remain a great challenge in satisfying diverse testing demands. Herein, we proposed a novel three-in-one multifunctional hollow vanadium nanomicrosphere (high brightness-catalytic-photothermal properties)-mediated triple-readout ICA (VHMS-ICA) for sensitive detection of T-2. As the key to this biosensing strategy, vanadium was used as the catalytic-photothermal characterization center, and natural polyphenols were utilized as the bridging ligands for coupling with the antibody while self-assembling with formaldehyde cross-linking into a hollow nanocage-like structure, which offers the possibility of realizing a three-signal readout strategy and improving the coupling efficiency to the antibody while preserving its biological activity. The constructed sensors showed a detection limit (LOD) of 2 pg/mL for T-2, which was about 345-fold higher than that of conventional gold nanoparticle-based ICA (0.596 ng/mL). As anticipated, the detection range of VHMS-ICA was extended about 8-fold compared with the colorimetric signal alone. Ultimately, the proposed immunosensor performed well in maize and oat samples, with satisfactory recoveries. Owing to the synergistic and complementary interactions between distinct signaling modes, the establishment of multimodal immunosensors with multifunctional tags is an efficient strategy to satisfy diversified detection demands.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metal Nanoparticles/chemistry , Immunoassay , Colorimetry , Gold/chemistry , Vanadium , Antibodies , Limit of Detection
2.
Anal Chem ; 96(3): 1232-1240, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38164711

ABSTRACT

The emergence of nanoenzymes has catalyzed the robust advancement of the lateral flow immunoassay (LFIA) in recent years. Among them, multifunctional nanocomposite enzymes with core-shell architectures are considered preferable for promoting the sensing ability due to their good biocompatibility, precise control over size, and surface properties etc. Herein, we developed a dual-channel ensured lateral flow immunoassay (DFLIA) platform utilizing a magnetic, colorimetric, and catalytic multifunctional nanocomposite enzyme (Fe3O4@TCPP@Pd) [TCPP, Tetrakis (4-carboxyphenyl) porphyrin] for the ultrasensitive and highly accurate rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). Fe3O4@TCPP@Pd-mAb exhibits superior performance compared to traditional AuNPs, including enhanced sensitivity and an extended linear detection range, benefiting from its high brightness signal, strong magnetic separation ability, and high peroxidase activity (Vmax = 2.32 µM S1-). Moreover, the Fe3O4@TCPP@Pd-labeled mAb probe exhibited exceptional stability and high affinity toward E. coli O157:H7 (with an affinity constant of approximately 1.723 × 109 M-1), indicating its potential for the efficient capture of the pathogen. Impressively, the developed Fe3O4@TCPP@Pd-DFLIA achieved ultrasensitive detection for E. coli O157:H7 with pre- and postcatalytic naked-eye detection sensitivities of 255 cfu/mL and 77 cfu/mL, respectively, representing an approximately 41-fold improvement over the conventional AuNP-based LFIA and also possessed good specificity and reproducibility [relative standard deviation (RSD) < 10%]. Additionally, the established DFLIA exhibited satisfactory recoveries in detecting pork and milk samples, further validating the reliability of this platform for immunoassays and demonstrating its potential for utilization in bioassays and clinical diagnostics.


Subject(s)
Escherichia coli O157 , Metal Nanoparticles , Nanocomposites , Animals , Milk , Reproducibility of Results , Gold/chemistry , Colorimetry , Metal Nanoparticles/chemistry , Immunoassay/methods , Nanocomposites/chemistry , Magnetic Phenomena , Food Microbiology
3.
Mar Environ Res ; 192: 106210, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788964

ABSTRACT

Lumnitzera littorea (Jack) Voigt is one of the most endangered mangrove species in China. Previous studies have showed the impact of chilling stress on L. littorea and the repsonses at physiological and biochemical levels, but few attentions have been paid at molecular level. In this study, we conducted genome-wide investigation of transcriptional and post-transcriptional dynamics in L. littorea in response to chilling stress (8 °C day/5 °C night). In the seedlings of L. littorea, chilling sensing and signal transducing, photosystem II regeneration and peroxidase-mediated reactive oxygen species (ROS) scavenging were substantially enhanced to combat the adverse impact induced by chilling exposure. We further revealed that alternative polyadenylation (APA) events participated in chilling stress-responsive processes, including energy metabolism and steroid biosynthesis. Furthermore, APA-mediated miRNA regulations downregulated the expression of the genes involved in fatty acid biosynthesis and elongation, and protein phosphorylation, reflecting the important role of post-transcriptional regulation in modulating chilling tolerance in L. littorea. Our findings present a molecular view to the adaptive characteristics of L. littorea and shed light on the conservation genomic approaches of endangered mangrove species.


Subject(s)
Cold Temperature , Stress, Physiological , Reactive Oxygen Species/metabolism , China , Gene Expression Regulation, Plant
4.
Anal Chem ; 95(42): 15531-15539, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37753722

ABSTRACT

Improving the sensitivity of immunochromatographic assays (ICAs) lies in the signal strength and probe activity of the labeled tracers, and the color properties and structure of the labeled tracers are key factors affecting the biological activity. In this study, cerium vanadate (CeVO4) of different sizes and shapes (230, 1058, and 710 nm) was synthesized to investigate its impact on the performance of ICA for T-2 detection. The prepared CeVO4 possessed outstanding stability, a large specific surface area, superior biocompatibility, and high compatibility with T-2 mAb (affinity constant was 3.14 × 108 M-1). As labeling probes for competitive ICA, the results showed that 1058 nm of CeVO4 as labels exhibited the best detection performance, with a limit of detection (LOD) of 0.079 ng/mL, which was substantially 19-fold less than the average of gold nanoparticle ICA. Additionally, CeVO4-ICA was effectively used to detect T-2 toxin, and the recovery rate for spiking corn and oatmeal samples was determined to be 81.27-115.44% (relative standard deviation <9.16%). The above information demonstrates the efficiency and applicability of CeVO4-ICA as a technique for quick and thorough identification of T-2 toxin residues in food.

5.
Anal Chem ; 95(45): 16585-16592, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37774142

ABSTRACT

Nanomaterials-based immunochromatographic assays (ICAs) are of great significance in point-of-care testing (POCT), yet it remains challenging to explore low background platforms and high chromogenic intensity probes to improve detection performance. Herein, we reported a low interference and high signal-to-noise ratio fluorescent ICA platform based on ultrabright persistent luminescent nanoparticles (PLNPs) Zn2GeO4: Mn, which could produce intense photoluminescence at 254 nm excitation to reduce background interference from ICA substrates and samples. The prepared immunosensor was successfully applied in T-2 toxin detection with a remarkable limit of detection of 0.025 ng/mL, which was 22-fold more sensitive compared with that of traditional gold nanoparticles. Ultimately, a portable 3D-printed detection device equipped with a smartphone analyzing application was fabricated for quantitative readout in POCT, achieving favorable recoveries in practical sample detection. This work provides a creative attempt for ultrabright PLNP-based low background ICA, and it also guarantees its feasibility in practical POCT.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes , Gold , Metal Nanoparticles/chemistry , Immunoassay/methods , Coloring Agents , Limit of Detection
6.
Anal Chem ; 95(24): 9237-9243, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37232263

ABSTRACT

Nanozymes have drawn much attention as an enzyme mimetic with low cost and stability in enhancing analytical performance. Herein, a peroxidase-mimicking nanozyme-improved enzyme-linked immunosorbent assay (ELISA) was developed employing the bimetallic PdRu nanozyme to replace the natural enzymes as a catalytic carrier for the sensing of Escherichia coli O157:H7 (E. coli O157:H7). The PdRu nanozyme displayed ultrahigh catalytic activity, possessing a catalytic rate that was 5-fold higher than horseradish peroxidase (HRP). In addition, PdRu exhibited great biological affinity with antibody (affinity constant was about 6.75 × 1012 M) and high stability. All those advantages ensure the successful establishment and the construction of a novel colorimetric biosensor for E. coli O157:H7 detection. PdRu-based ELISA not only achieved an ultrasensitive detection sensitivity (8.7 × 102 CFU/mL) by approximately 288-fold as compared to the traditional HRP-based ELISA and also possessed satisfactory specificity and reproducibility (relative standard deviation (RSD) < 10%). Furthermore, the feasibility of PdRu-ELISA was further evaluated by detecting E. coli O157:H7 in actual samples with satisfactory recoveries, indicating its potential for applications in bioassays and clinical diagnostics.


Subject(s)
Escherichia coli O157 , Reproducibility of Results , Enzyme-Linked Immunosorbent Assay , Antibodies, Bacterial , Horseradish Peroxidase
7.
Mater Today Bio ; 19: 100606, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37063247

ABSTRACT

Neural stem cell (NSC) has gained considerable attention in traumatic brain injury (TBI) treatment because of their ability to replenish dysfunctional neurons and stimulate endogenous neurorestorative processes. However, their therapeutic effects are hindered by the low cell retention rate after transplantation into the dynamic brain. In this study, we found cerebrospinal fluid (CSF) flow after TBI is an important factor associated with cell loss following NSC transplantation. Recently, several studies have shown that hydrogels could serve as a beneficial carrier for stem cell transplantation, which provides a solution to prevent CSF flow-induced cell loss after TBI. For this purpose, we evaluated three different hydrogel scaffolds and found the gelatin methacrylate (GelMA)/sodium alginate (Alg) (GelMA/Alg) hydrogel scaffold showed the best capabilities for NSC adherence, growth, and differentiation. Additionally, we detected that pre-differentiated NSCs, which were loaded on the GelMA/Alg hydrogel and cultured for 7 days in neuronal differentiation medium (NSC [7d]), had the highest cell retention rate after CSF impact. Next, the neuroprotective effects of the NSC-loaded GelMA/Alg hydrogel scaffold were evaluated in a rat model of TBI. NSC [7d]-loaded GelMA/Alg markedly decreased microglial activation and neuronal death in the acute phase, reduced tissue loss, alleviated astrogliosis, promoted neurogenesis, and improved neurological recovery in the chronic phase. In summary, we demonstrated that the integration with the GelMA/Alg and modification of NSC differentiation could inhibit the influence of CSF flow on transplanted NSCs, leading to increased number of retained NSCs and improved neuroprotective effects, providing a promising alternative for TBI treatment.

8.
Anal Chem ; 95(12): 5275-5284, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36898021

ABSTRACT

Owing to its high throughput, simplicity, and rapidity, enzyme-linked immunosorbent assay (ELISA) has attracted much attention in the field of immunoassays. However, the traditional ELISA usually affords a single signal readout and the labeling ability of the enzyme used is poor, resulting in low accuracy and a limited detection range. Herein, a vanadium nanospheres (VNSs)-mediated competitive ratio nanozymes-linked immunosorbent assay (VNSs-RNLISA) was created for the sensitive detection of the T-2 toxin (T-2). As the key to the biosensor, the VNSs with superoxide dismutase-like and peroxidase-like dual-enzyme mimetic activities were synthesized by a one-step hydrothermal method, which oxidized 1,1-diphenyl-2-picryl-hydrazyl fading and catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) color development. Therefore, T-2 could not only be qualitatively measured with the naked eye but also be quantitatively evaluated by monitoring the ratio of absorbance at 450 and 517 nm wavelengths. Moreover, the characterization of a VNSs-labeled antibody probe showed strong dual-enzymatic activity, excellent stability, and high affinity with T-2 [the affinity constant (ka) was approximately 1.36 × 108 M-1], which can significantly improve the detection sensitivity. The limit of detection of VNSs-RNLISA was 0.021 ng/mL, which was approximately 27-fold more sensitive than the single signal nanozymes-linked immunosorbent assay (0.561 ng/mL). Besides, the change in the ratio of absorbance (Δ450/Δ517) decreased linearly in a range of 0.22-13.17 ng/mL, outperforming the detection range of a single-mode nano-enzyme-linked immunosorbent assay using TMB by a factor of 1.6 times. Furthermore, the VNSs-RNLISA was successfully used to identify T-2 in maize and oat samples, with recoveries ranging from 84.216 to 125.371%. Overall, this tactic offered a promising platform for the quick detection of T-2 in food and might broaden the application range of the enzyme-linked immunosorbent assay.


Subject(s)
Biosensing Techniques , Nanospheres , T-2 Toxin , Immunoassay/methods , Vanadium , Immunosorbents , Limit of Detection
9.
Food Chem ; 418: 135948, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36944309

ABSTRACT

Designing efficient and sensitive methods for the detection of nitrofurantoin (NFT) residues is of great importance for food safety and environmental protection. Herein, a composite with cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotube (N/Co@CNTs@CC-II) was synthesized by in-situ growth and sublimation-gas phase transformation strategy and used to establish an ultrasensitive electrochemical sensor for NFT determination. The N/Co@CNTs@CC-II sensor exhibits uniform N doping, fine hollow structure, and abundant active metal sites, which lays a solid foundation for the ultra-sensitive detection of NFT. Benefiting from these advantages, the N/Co@CNTs@CC-II exhibits excellent sensitivity (8.19 µA µM-1 cm-2) and low detection limit (18.41 nM) for NFT detection. The practical feasibility of N/Co@CNTs@CC-II was also demonstrated by the determination of NFT in milk and tap water samples. This study may open up new opportunities for the application of N-doped carbon nanotube materials encapsulating transition metals.


Subject(s)
Nanoparticles , Nanotubes, Carbon , Cobalt/chemistry , Nanotubes, Carbon/chemistry , Nitrofurantoin , Metal Nanoparticles
10.
Food Chem ; 401: 134131, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36103740

ABSTRACT

In this work, a highly sensitive immunochromatographic test strip (ITS) based on Scandium-Tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework nanocubes (ScTMNs) was developed for ultrasensitive and facile visual determination of imidacloprid (IDP). TCPP as the porphyrin-based planar ligand and Sc3+ as the metal center were applied to form the ScTMNs via coordination chelation. Giving the credit to its excellent optical characteristics, strong affinity with monoclonal antibodies, and favorable biocompatibility, the ScTMNs was selected as a signal tag. Under optimized conditions, the ITS exhibited a great liner relationship in the range of 0.04-3 ng/mL and the detection limit was 0.04 ng/mL for the IDP detection. Additionally, IDP was successfully detected in tomatoes, millet, corn and carrot samples with satisfied recoveries. To the best of our knowledge, this is the first time that ScTMNs have been used in immunochromatography which are expected to have potential applications in detection of other substances.


Subject(s)
Metal-Organic Frameworks , Porphyrins , Antibodies, Monoclonal , Chromatography, Affinity/methods , Food Contamination/analysis , Immunoassay , Ligands , Limit of Detection , Metal-Organic Frameworks/analysis , Scandium/analysis
11.
BMC Pediatr ; 21(1): 192, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33882898

ABSTRACT

BACKGROUND: Pneumonia is the leading cause of death and hospitalization among young children worldwide, but its risk factors remain unclear. OBJECTIVE: To evaluate the effect of maternal exposure to diurnal temperature variation (DTV) during preconceptional and prenatal periods on childhood pneumonia. METHODS: A retrospective cohort study by case-control design was conducted for pneumonia (N = 699) and normal (N = 811) children under age of 14 who were enrolled in XiangYa Hospital, Changsha, China from May 2017 to April 2019. Demographic data including gender, age, birth season, gestational age, parity, mode of delivery, and parental atopy were collected from the electronic medical records in the hospital system. We obtained the data of daily DTV in Changsha during 2003-2019 from China Meteorological Administration. Maternal exposure to DTV during preconceptional and prenatal periods was respectively calculated by the average of daily DTV during one year and three months before conception and entire pregnancy as well as the three trimesters. The association between maternal exposure to outdoor DTV and childhood pneumonia was analyzed by multiple logic regression model. RESULTS: We found that childhood pneumonia was significantly associated with exposure to an increase in DTV during one year before conception and entire pregnancy, with ORs (95 % CI) = 2.53 (1.56-4.10) and 1.85 (1.24-2.76). We further identified a significant risk of pneumonia of DTV exposure during the first and second trimester of pregnancy. Sensitivity analysis showed that boys were more susceptible to the effect of prenatal exposure to outdoor DTV during pregnancy particularly in the first two trimesters compared to girls. CONCLUSIONS: Preconceptional and prenatal exposure to DTV plays an important role in development of childhood pneumonia, especially during the first and second trimesters of pregnancy.


Subject(s)
Pneumonia , Prenatal Exposure Delayed Effects , Child , Child, Preschool , China/epidemiology , Female , Humans , Male , Maternal Exposure , Pneumonia/epidemiology , Pneumonia/etiology , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/etiology , Retrospective Studies , Temperature
12.
Ecotoxicol Environ Saf ; 210: 111860, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33421724

ABSTRACT

BACKGROUND: Increasing evidence has linked childhood pneumonia with early exposure to ambient air pollution. However, the impact of exposure to air pollutants before birth is unclear. OBJECTIVE: To further clarify whether exposure to a particular pollutant during preconceptional and prenatal periods, may pose a higher risk of developing childhood pneumonia. METHODS: This case-control cohort study consisted of 1510 children aged 0-14 years in Changsha, China between 2017 and 2019. Data of children's history of pneumonia and blood biomarkers were obtained from the XiangYa Hospital records. Each child's exposure to air pollutants, including nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), was calculated using data from ten air pollution monitoring stations. A multivariate logistic regression model was used to quantify the relationship between childhood pneumonia and exposure to ambient air pollution during the preconceptional and prenatal periods. RESULTS: Childhood pneumonia was significantly associated with preconceptional and prenatal exposure to the industrial-related air pollutant, SO2, for 1 year before conception, for 3 months before conception and for the entire pregnancy, with ORs(95% CI)= 4.01(3.17-5.07), 4.06(3.29-5.00) and 6.51(4.82-8.79). Also, children who were sick with pneumonia had higher white blood cell and neutrophil counts, and children with low eosinophil count or hemoglobin are likely to get pneumonia. Sensitivity analysis showed that boys, and children in high temperature area were susceptible to the effect of both preconceptional and prenatal exposure to industrial SO2. CONCLUSION: Preconceptional and prenatal exposure to industrial-related air pollution plays a significant role in the incidence and progression of childhood pneumonia, supporting the hypothesis of "(pre-)fetal origin of childhood pneumonia".


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Maternal-Fetal Exchange , Pneumonia/epidemiology , Prenatal Exposure Delayed Effects , Sulfur Dioxide/adverse effects , Adolescent , Air Pollutants/analysis , Air Pollution/analysis , Case-Control Studies , Child , Child, Preschool , China/epidemiology , Cohort Studies , Environmental Exposure/analysis , Female , Humans , Incidence , Industry , Infant , Infant, Newborn , Male , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Pregnancy , Sulfur Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...