Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 24(1): 222, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937761

ABSTRACT

Triple negative breast cancer (TNBC) is a type of cancer that lacks receptor expression and has complex molecular mechanisms. Recent evidence shows that the ubiquitin-protease system is closely related to TNBC. In this study, we obtain a key ubiquitination regulatory substrate-ABI2 protein by bioinformatics methods, which is also closely related to the survival and prognosis of TNBC. Further, through a series of experiments, we demonstrated that ABI2 expressed at a low level in TNBC tumors, and it has the ability to control cell cycle and inhibit TNBC cell migration, invasion and proliferation. Molecular mechanism studies proved E3 ligase CBLC could increase the ubiquitination degradation of ABI2 protein. Meanwhile, RNA-seq and IP experiments indicated that ABI2, acting as a crucial factor of tumor suppression, can significantly inhibit PI3K/Akt signaling pathway via the interaction with Rho GTPase RAC1. Finally, based on TNBC drug target ABI2, we screened and found that FDA-approved drug Colistimethate sodium(CS) has significant potential in suppressing the proliferation of TNBC cells and inducing cell apoptosis, making it a promising candidate for impeding the progression of TNBC.

2.
Cell Death Dis ; 15(4): 289, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653973

ABSTRACT

GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.


Subject(s)
Breast Neoplasms , Cell Movement , GATA4 Transcription Factor , Gene Expression Regulation, Neoplastic , Histone Deacetylase 1 , Matrix Metalloproteinase 9 , Neoplasm Invasiveness , Humans , GATA4 Transcription Factor/metabolism , GATA4 Transcription Factor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Female , Cell Movement/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Animals , Acetylation , Cell Line, Tumor , Mice , Transcription Factor RelA/metabolism , Transcription, Genetic , Promoter Regions, Genetic/genetics , Mice, Nude , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL