Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
J Psychiatr Res ; 175: 227-234, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38744162

ABSTRACT

OBJECTIVES: Transcranial alternating current stimulation (tACS) is a potential therapeutic psychiatric tool that has been shown to modulate clinical symptoms and brain function by inducing brain oscillations. However, direct evidence on the effects of gamma-tACS (γ-tACS) on Bipolar I Disorder (BD-I) is limited. In the present study we used functional near-infrared spectroscopy to explore prefrontal hemodynamic changes in BD-I patients receiving combined γ-tACS intervention in addition to pharmacological treatment. METHODS: Only 39 male patients with BD-I in the acute manic phase were included, and they were randomly divided into an intervention group (n = 18) and a control group (n = 21). The intervention group received γ-tACS treatment on a weekday for a total of 10 sessions in the right prefrontal cortex and left prefrontal cortex. All participants were pretested (baseline) and posttested (2 weeks after) with questionnaires to assess clinical symptoms and cognitive abilities, and with functional near infrared spectroscopy (fNIRS) to assess spontaneous cortical hemodynamic activities. RESULTS: Compared to the control group, the intervention group had greater increases in Montreal Cognitive Assessment (MoCA) scores, and greater decreases in Bech-Rafaelsen Mania Rating Scale (BRMS) scores. In the intervention group, functional connectivity (FC) was significantly greater in the left hemisphere. γ-tACS treatment resulted in a left hemispheric lateralization effect of resting state FC in BD-I patients, increasing the hemodynamic activity of the patient's left prefrontal cortex. CONCLUSIONS: γ-tACS can improve cognitive impairment and mood symptoms with BD-I patients in an acute manic episode by enhancing FC in the patients' left prefrontal cortex.

2.
Article in English | MEDLINE | ID: mdl-38744667

ABSTRACT

BACKGROUND AND AIM: False positives (FPs) pose a significant challenge in the application of artificial intelligence (AI) for polyp detection during colonoscopy. The study aimed to quantitatively evaluate the impact of computer-aided polyp detection (CADe) systems' FPs on endoscopists. METHODS: The model's FPs were categorized into four gradients: 0-5, 5-10, 10-15, and 15-20 FPs per minute (FPPM). Fifty-six colonoscopy videos were collected for a crossover study involving 10 endoscopists. Polyp missed rate (PMR) was set as primary outcome. Subsequently, to further verify the impact of FPPM on the assistance capability of AI in clinical environments, a secondary analysis was conducted on a prospective randomized controlled trial (RCT) from Renmin Hospital of Wuhan University in China from July 1 to October 15, 2020, with the adenoma detection rate (ADR) as primary outcome. RESULTS: Compared with routine group, CADe reduced PMR when FPPM was less than 5. However, with the continuous increase of FPPM, the beneficial effect of CADe gradually weakens. For secondary analysis of RCT, a total of 956 patients were enrolled. In AI-assisted group, ADR is higher when FPPM ≤ 5 compared with FPPM > 5 (CADe group: 27.78% vs 11.90%; P = 0.014; odds ratio [OR], 0.351; 95% confidence interval [CI], 0.152-0.812; COMBO group: 38.40% vs 23.46%, P = 0.029; OR, 0.427; 95% CI, 0.199-0.916). After AI intervention, ADR increased when FPPM ≤ 5 (27.78% vs 14.76%; P = 0.001; OR, 0.399; 95% CI, 0.231-0.690), but no statistically significant difference was found when FPPM > 5 (11.90% vs 14.76%, P = 0.788; OR, 1.111; 95% CI, 0.514-2.403). CONCLUSION: The level of FPs of CADe does affect its effectiveness as an aid to endoscopists, with its best effect when FPPM is less than 5.

3.
Women Health ; 64(4): 330-340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38556776

ABSTRACT

Pelvic girdle pain (PGP) is a common problem during pregnancy and postpartum and negatively affects women's well-being. Yet it is not well known in China. This study assessed PGP's intensity, location, and quality and the status of daily activities on postpartum women with pain, and explored the relationship between pain and the prevalence of depressive symptoms. A cross-sectional study recruiting 1,038 eligible women at 6 weeks postpartum from the obstetric clinic of a hospital was conducted in Beijing, China. Data were collected using self-reported questionnaires, including Introductory information form, Body chart, Number Rating Scale, McGill Pain Questionnaire-2, Pelvic Girdle Questionnaire, and Edinburgh Postnatal Depression Scale. In this study, 32.2 percent women experienced pain. The mean (SD) pain intensity score was 3.07 ± 1.60. About 50.6 percent women experienced sacroiliac joint pain, and 25.5 percent women experienced pain in a combination of locations. About 73.1 percent women experienced aching pain, and 57.5 percent experienced more than one kind of pain quality. The mean total score, which assesses activity and symptom limitations, was 21.93 ± 17.35 (percent), of which a normal sex life (1.29 ± 0.94) was made more challenging due to pain. In mental health, the prevalence of depressive symptoms coincided with the prevalence of pain (p = 0.008). Postpartum PGP still needs to be taken seriously, and women with pain require further support. The above knowledge offers information to manage pain, daily lives and depressive symptoms, contributes to think about strategies to better promote postpartum women physical and mental health in the future.


Subject(s)
Activities of Daily Living , Pain Measurement , Pelvic Girdle Pain , Postpartum Period , Humans , Female , Postpartum Period/psychology , Adult , Pelvic Girdle Pain/epidemiology , Pelvic Girdle Pain/psychology , Cross-Sectional Studies , Surveys and Questionnaires , China/epidemiology , Prevalence , Beijing/epidemiology , Pregnancy , Quality of Life , Depression/epidemiology , Depression/psychology , Depression, Postpartum/epidemiology , Depression, Postpartum/psychology , Young Adult
4.
In Vivo ; 38(3): 1192-1198, 2024.
Article in English | MEDLINE | ID: mdl-38688651

ABSTRACT

BACKGROUND/AIM: Probing brain tumor microvasculature holds significant importance in both basic cancer research and medical practice for tracking tumor development and assessing treatment outcomes. However, few imaging methods commonly used in clinics can noninvasively monitor the brain microvascular network at high precision and without exogenous contrast agents in vivo. The present study aimed to investigate the characteristics of microvasculature during brain tumor development in an orthotopic glioma mouse model. MATERIALS AND METHODS: An orthotopic glioma mouse model was established by surgical orthotopic implantation of U87-MG-luc cells into the mouse brain. Then, optical coherence tomography angiography (OCTA) was utilized to characterize the microvasculature progression within 14 days. RESULTS: The orthotopic glioma mouse model evaluated by bioluminescence imaging and MRI was successfully generated. As the tumor grew, the microvessels within the tumor area slowly decreased, progressing from the center to the periphery for 14 days. CONCLUSION: This study highlights the potential of OCTA as a useful tool to noninvasively visualize the brain microvascular network at high precision and without any exogenous contrast agents in vivo.


Subject(s)
Brain Neoplasms , Disease Models, Animal , Glioma , Tomography, Optical Coherence , Animals , Tomography, Optical Coherence/methods , Mice , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/pathology , Cell Line, Tumor , Humans , Microvessels/diagnostic imaging , Microvessels/pathology , Magnetic Resonance Imaging/methods , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/pathology , Angiography/methods
5.
Environ Toxicol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517198

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is a highly malignant tumor with limited effective treatment options. This study aimed to investigate the regulatory mechanism of Glabrene on NSCLC through its interaction with FGFR3. METHODS: HCC827 cells were implanted into nude mice and treated with Glabrene. Tumor volume was monitored at 0, 3, 6, and 9 days after medical treatment. Tissue analysis included Hematoxylin and Eosin (HE) and Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) staining, as well as immunohistochemistry for Ki67, ERK1/2, and p-ERK1/2 expression. Cell viability was determined with the CCK8 method. We utilized immunofluorescence techniques to observe apoptosis, as well as the levels of E-cadherin and Vimentin expression. Cellular proliferation was determined via plate cloning assay and cellular mobility was determined via scratch assay. Cellular invasion ability was assessed via a transwell assay. mRNA and protein levels of FGFR3, MMP1, MMP9, vimentin, E-cadherin, ERK1/2, and p-ERK1/2 were detected via qPCR and Western blot. IGF-1, VEGF, and Estradiol (E2) levels were measured through Enzyme linked immunosorbent assay (ELISA). RESULTS: This study verified that Glabrene was capable of suppressing tumor growth in NSCLC mice, reversing tumor tissue's pathological morphology, attenuating the capacities of cancerous cells' proliferation, migration, and invasion, and leading to apoptosis. Besides, Glabrene could reduce the FGFR3 expression in HCC827 cells. Over-expression of FGFR3 promotes the proliferation of HCC827 cells, increase both contents of IGF-1, VEGF, and E2, and expressions of MMP1, MMP9, vimentin, and p-ERK1/2, while Glabrene inhibited FGFR3. Glabrene, and inhibition of FGFR3 expression were capable of decreasing FGFR3, MMP1, MMP9, vimentin, and p-ERK1/2 expression, as well as contents of IGF-1, VEGF, and E2 in model mice and HCC827 cells, and promoting the expression of E-cadherin. CONCLUSION: Glabrene has the potential as a therapeutic agent for NSCLC by reducing cancer invasion and migration through the inhibition of ERK1/2 phosphorylation and suppression of epithelial-mesenchymal transition (EMT).

6.
J Biomed Opt ; 29(Suppl 1): S11520, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38333219

ABSTRACT

Significance: Neural regulation at high precision vitally contributes to propelling fundamental understanding in the field of neuroscience and providing innovative clinical treatment options. Recently, photoacoustic brain stimulation has emerged as a cutting-edge method for precise neuromodulation and shows great potential for clinical application. Aim: The goal of this perspective is to outline the advancements in photoacoustic brain stimulation in recent years. And, we also provide an outlook delineating several prospective paths through which this burgeoning approach may be substantively refined for augmented capability and wider implementations. Approach: First, the mechanisms of photoacoustic generation as well as the potential mechanisms of photoacoustic brain stimulation are provided and discussed. Then, the state-of-the-art achievements corresponding to this technology are reviewed. Finally, future directions for photoacoustic technology in neuromodulation are provided. Results: Intensive research endeavors have prompted substantial advancements in photoacoustic brain stimulation, illuminating the unique advantages of this modality for noninvasive and high-precision neuromodulation via a nongenetic way. It is envisaged that further technology optimization and randomized prospective clinical trials will enable a wide acceptance of photoacoustic brain stimulation in clinical practice. Conclusions: The innovative practice of photoacoustic technology serves as a multifaceted neuromodulation approach, possessing noninvasive, high-accuracy, and nongenetic characteristics. It has a great potential that could considerably enhance not only the fundamental underpinnings of neuroscience research but also its practical implementations in a clinical setting.


Subject(s)
Photoacoustic Techniques , Brain/diagnostic imaging , Photoacoustic Techniques/methods , Prospective Studies
7.
Planta ; 259(4): 77, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421445

ABSTRACT

MAIN CONCLUSION: The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.


Subject(s)
Blueberry Plants , Blueberry Plants/genetics , Phylogeny , Reproduction , Flowers/genetics , Gene Duplication
8.
Plants (Basel) ; 12(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005693

ABSTRACT

Streptomyces alfalfa strain 11F has inhibitory effects on many phytopathogenic fungi and improves the establishment and biomass yield of switchgrass. However, the antagonistic effects of strain 11F on Fusarium wilt of watermelon and its secondary metabolites that contribute to its biocontrol activity are poorly understood. We evaluated the antagonistic and growth-promoting effects of strain 11F and conducted a transcriptome analysis to identify the metabolites contributing to antifungal activity. Strain 11F had marked inhibitory effects on six fungal pathogens. The incidence of Fusarium wilt of watermelon seedlings was decreased by 46.02%, while watermelon seedling growth was promoted, as indicated by plant height (8.7%), fresh weight (23.1%), and dry weight (60.0%). Clean RNA-sequencing data were annotated with 7553 functional genes. The 2582 differentially expressed genes (DEGs) detected in the Control vs. Case 2 comparison were divided into 42 subcategories of the biological process, cellular component, and molecular function Gene Ontology categories. Seven hundred and forty functional genes (55.47% of the DEGs) were assigned to Kyoto Encyclopedia of Genes and Genomes metabolic pathways, reflecting the complexity of the strain 11F metabolic regulatory system. The expression level of the gene phzF, which encodes an enzyme essential for phenazine-1-carboxylic acid (PCA) synthesis, was downregulated 3.7-fold between the 24 h and 48 h fermentation time points, suggesting that strain 11F can produce phenazine compounds. A phenazine compound from 11F was isolated and identified as phenazine-1-carboxamide (PCN), which contributed to the antagonistic activity against Fusarium oxysporum f. sp. niveum. PCA was speculated to be the synthetic precursor of PCN. The downregulation in phzF expression might be associated with the decrease in PCA accumulation and the increase in PCN synthesis in strain 11F from 24 to 48 h. Streptomyces alfalfae 11F protects watermelon seedlings from Fusarium wilt of watermelon and promotes seedling growth. The transcriptome analysis of strain 11F provides insights into the synthesis of PCN, which has antifungal activity against F. oxysporum f. sp. niveum of watermelon.

9.
Food Chem ; 429: 136835, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37463535

ABSTRACT

Ultrasensitive sandwich immunoassays for detecting the small molecule semicarbazide (SEM) were developed based on derivatization. Several SEM derivatizing agents were synthesized by linking o-nitrobenzaldehyde (NBA) and biotin with dihydroxyalkanes (different lengths), which were then used to evaluate the distance effect of two epitopes. Sandwich ELISA for SEM derivatives was developed using an anti-SEM-NBA antibody and horseradish peroxidase-labeled avidin or anti-biotin antibody as a secondary conjugate. The advantageous distances of the two epitopes under the double-antibody sandwich and antibody-avidin sandwich modes were ≥12 and ≥13 Å, respectively. Under the distances, the sensitivities of the sandwich ELISA were no lower than those of competitive ELISA. The obtained optimal EC50 values were 11.2 pg/mL (double-antibody sandwich with the epitope distance ≥16 Å) and 7.3 pg/mL (antibody-avidin sandwich with the epitope distance ≥17 Å). Compared with competitive ELISA, the developed method achieved a 30-fold improvement in sensitivity, with simpler aquatic product pretreatment.


Subject(s)
Avidin , Biotin , Immunoassay/methods , Enzyme-Linked Immunosorbent Assay , Epitopes , Antibodies
10.
Front Med (Lausanne) ; 10: 1164188, 2023.
Article in English | MEDLINE | ID: mdl-37153082

ABSTRACT

Objective: In order to automatically and rapidly recognize the layers of corneal images using in vivo confocal microscopy (IVCM) and classify them into normal and abnormal images, a computer-aided diagnostic model was developed and tested based on deep learning to reduce physicians' workload. Methods: A total of 19,612 corneal images were retrospectively collected from 423 patients who underwent IVCM between January 2021 and August 2022 from Renmin Hospital of Wuhan University (Wuhan, China) and Zhongnan Hospital of Wuhan University (Wuhan, China). Images were then reviewed and categorized by three corneal specialists before training and testing the models, including the layer recognition model (epithelium, bowman's membrane, stroma, and endothelium) and diagnostic model, to identify the layers of corneal images and distinguish normal images from abnormal images. Totally, 580 database-independent IVCM images were used in a human-machine competition to assess the speed and accuracy of image recognition by 4 ophthalmologists and artificial intelligence (AI). To evaluate the efficacy of the model, 8 trainees were employed to recognize these 580 images both with and without model assistance, and the results of the two evaluations were analyzed to explore the effects of model assistance. Results: The accuracy of the model reached 0.914, 0.957, 0.967, and 0.950 for the recognition of 4 layers of epithelium, bowman's membrane, stroma, and endothelium in the internal test dataset, respectively, and it was 0.961, 0.932, 0.945, and 0.959 for the recognition of normal/abnormal images at each layer, respectively. In the external test dataset, the accuracy of the recognition of corneal layers was 0.960, 0.965, 0.966, and 0.964, respectively, and the accuracy of normal/abnormal image recognition was 0.983, 0.972, 0.940, and 0.982, respectively. In the human-machine competition, the model achieved an accuracy of 0.929, which was similar to that of specialists and higher than that of senior physicians, and the recognition speed was 237 times faster than that of specialists. With model assistance, the accuracy of trainees increased from 0.712 to 0.886. Conclusion: A computer-aided diagnostic model was developed for IVCM images based on deep learning, which rapidly recognized the layers of corneal images and classified them as normal and abnormal. This model can increase the efficacy of clinical diagnosis and assist physicians in training and learning for clinical purposes.

11.
J Perinat Med ; 51(8): 1052-1058, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37161929

ABSTRACT

OBJECTIVES: Congenital heart defects (CHDs) are the most common birth defects. Recently, artificial intelligence (AI) was used to assist in CHD diagnosis. No comparison has been made among the various types of algorithms that can assist in the prenatal diagnosis. METHODS: Normal and abnormal fetal ultrasound heart images, including five standard views, were collected according to the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) Practice guidelines. You Only Look Once version 5 (YOLOv5) models were trained and tested. An excellent model was screened out after comparing YOLOv5 with other classic detection methods. RESULTS: On the training set, YOLOv5n performed slightly better than the others. On the validation set, YOLOv5n attained the highest overall accuracy (90.67 %). On the CHD test set, YOLOv5n, which only needed 0.007 s to recognize each image, had the highest overall accuracy (82.93 %), and YOLOv5l achieved the best accuracy on the abnormal dataset (71.93 %). On the VSD test set, YOLOv5l had the best performance, with a 92.79 % overall accuracy rate and 92.59 % accuracy on the abnormal dataset. The YOLOv5 models achieved better performance than the Fast region-based convolutional neural network (RCNN) & ResNet50 model and the Fast RCNN & MobileNetv2 model on the CHD test set (p<0.05) and VSD test set (p<0.01). CONCLUSIONS: YOLOv5 models are able to accurately distinguish normal and abnormal fetal heart ultrasound images, especially with respect to the identification of VSD, which have the potential to assist ultrasound in prenatal diagnosis.


Subject(s)
Deep Learning , Heart Defects, Congenital , Heart Septal Defects, Ventricular , Pregnancy , Female , Humans , Artificial Intelligence , Ultrasonography, Prenatal/methods , Heart Septal Defects, Ventricular/diagnostic imaging , Heart Defects, Congenital/diagnosis , Fetal Heart/diagnostic imaging
12.
Front Cell Dev Biol ; 11: 1182570, 2023.
Article in English | MEDLINE | ID: mdl-37215085

ABSTRACT

Aims: Gut-microbiome derived short-chain fatty acids exert anti-inflammatory effects and delay progression of kidney disease in diabetic nephropathy. The aim of this study was to examine the impact in vivo and in vitro of short-chain fatty acid treatment on cellular pathways involved in the development of experimental diabetic nephropathy. Methods: To determine the effect of short-chain fatty acids in diabetic nephropathy, we compared wildtype, GPR43-/- and GPR109A-/- mice diabetic mice treated with acetate or butyrate and assessed variables of kidney damage. We also examined the impact of short-chain fatty acid treatment on gene expression in renal tubular cells and podocytes under high glucose conditions. Results: Short-chain fatty acid treatment with acetate or butyrate protected wild-type mice against development of diabetic nephropathy, exhibiting less glomerular hypertrophy, hypercellularity and interstitial fibrosis compared to diabetic controls. Acetate and butyrate treatment did not provide the same degree of protection in diabetic GPR43-/- and GPR109A-/- diabetic mice respectively. Consistent with our in vivo results, expression of pro-inflammatory genes in tubular epithelial cells exposed to high glucose were attenuated by acetate and butyrate treatment. Acetate did not reduce inflammatory or fibrotic responses in glucose stimulated GPR43-/- TECs. Butyrate mediated inhibition of pro-fibrotic gene expression in TECs through GPR109A, and in podocytes via GPR43. Conclusion: SCFAs protect against progression of diabetic nephropathy and diminish podocyte and tubular epithelial injury and interstitial fibrosis via direct, GPR-pathway dependent effects on intrinsic kidney cells. GPR43 and GPR109A are critical to short-chain fatty acid mediated reno-protection and have potential to be harnessed as a therapeutic target in diabetic nephropathy.

13.
Hum Genomics ; 17(1): 23, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36927485

ABSTRACT

BACKGROUND: Blood metabolites are important to various aspects of our health. However, currently, there is little evidence about the role of circulating metabolites in the process of skin aging. OBJECTIVES: To examine the potential effects of circulating metabolites on the process of skin aging. METHOD: In the primary analyses, we applied several MR methods to study the associations between 249 metabolites and facial skin aging risk. In the secondary analyses, we replicated the analyses with another array of datasets including 123 metabolites. MR Bayesian model averaging (MR-BMA) method was further used to prioritize the metabolites for the identification of predominant metabolites that are associated with skin aging. RESULTS: In the primary analyses, only the unsaturation degree of fatty acids was found significantly associated with skin aging with the IVW method after multiple testing (odds ratio = 1.084, 95% confidence interval = 1.049-1.120, p = 1.737 × 10-06). Additionally, 11 out of 17 unsaturation-related biomarkers showed a significant or suggestively significant causal effect [p < 0.05 and > 2 × 10-4 (0.05/249 metabolites)]. In the secondary analyses, seven metabolic biomarkers were found significantly associated with skin aging [p < 4 × 10-4 (0.05/123)], while six of them were related to the unsaturation degree. MR-BMA method validated that the unsaturation degree of fatty acids plays a dominant role in facial skin aging. CONCLUSIONS: Our study used systemic MR analyses and provided a comprehensive atlas for the associations between circulating metabolites and the risk of facial skin aging. Genetically proxied unsaturation degree of fatty acids was highlighted as a dominant factor correlated with the risk of facial skin aging.


Subject(s)
Skin Aging , Humans , Skin Aging/genetics , Bayes Theorem , Mendelian Randomization Analysis , Aging/genetics , Fatty Acids , Genome-Wide Association Study , Polymorphism, Single Nucleotide
14.
Comput Math Methods Med ; 2023: 5650378, 2023.
Article in English | MEDLINE | ID: mdl-36733613

ABSTRACT

Congenital heart defect (CHD) refers to the overall structural abnormality of the heart or large blood vessels in the chest cavity. It is the most common type of fetal congenital defects. Prenatal diagnosis of congenital heart disease can improve the prognosis of the fetus to a certain extent. At present, prenatal diagnosis of CHD mainly uses 2D ultrasound to directly evaluate the development and function of fetal heart and main structures in the second trimester of pregnancy. Artificial recognition of fetal heart 2D ultrasound is a highly complex and tedious task, which requires a long period of prenatal training and practical experience. Compared with manual scanning, computer automatic identification and classification can significantly save time, ensure efficiency, and improve the accuracy of diagnosis. In this paper, an effective artificial intelligence recognition model is established by combining ultrasound images with artificial intelligence technology to assist ultrasound doctors in prenatal ultrasound fetal heart standard section recognition. The method data in this paper were obtained from the Second Affiliated Hospital of Fujian Medical University. The fetal apical four-chamber heart section, three vessel catheter section, three vessel trachea section, right ventricular outflow tract section, and left ventricular outflow tract section were collected at 20-24 weeks of gestation. 2687 image data were used for model establishment, and 673 image data were used for model validation. The experiment shows that the map value of this method in identifying different anatomical structures reaches 94.30%, the average accuracy rate reaches 94.60%, the average recall rate reaches 91.0%, and the average F1 coefficient reaches 93.40%. The experimental results show that this method can effectively identify the anatomical structures of different fetal heart sections and judge the standard sections according to these anatomical structures, which can provide an auxiliary diagnostic basis for ultrasound doctors to scan and lay a solid foundation for the diagnosis of congenital heart disease.


Subject(s)
Artificial Intelligence , Heart Defects, Congenital , Pregnancy , Female , Humans , Heart Defects, Congenital/diagnostic imaging , Fetal Heart/diagnostic imaging , Fetal Heart/abnormalities , Ultrasonography, Prenatal/methods , Echocardiography
15.
Clin Transl Gastroenterol ; 14(3): e00566, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36735539

ABSTRACT

INTRODUCTION: Constructing quality indicators that reflect the defect of colonoscopy operation for quality audit and feedback is very important. Previously, we have established a real-time withdrawal speed monitoring system to control withdrawal speed below the safe speed. We aimed to explore the relationship between the proportion of overspeed frames (POF) of withdrawal and the adenoma detection rate (ADR) and to conjointly analyze the influence of POF and withdrawal time on ADR to evaluate the feasibility of POF combined with withdrawal time as a quality control indicator. METHODS: The POF was defined as the proportion of frames with instantaneous speed ≥44 in the whole colonoscopy video. First, we developed a system for the POF of withdrawal based on a perceptual hashing algorithm. Next, we retrospectively collected 1,804 colonoscopy videos to explore the relationship between POF and ADR. According to withdrawal time and POF cutoff, we conducted a complementary analysis on the effects of POF and withdrawal time on ADR. RESULTS: There was an inverse correlation between the POF and ADR (Pearson correlation coefficient -0.836). When withdrawal time was >6 minutes, the ADR of the POF ≤10% was significantly higher than that of POF >10% (25.30% vs 16.50%; odds ratio 0.463, 95% confidence interval 0.296-0.724, P < 0.01). When the POF was ≤10%, the ADR of withdrawal time >6 minutes was higher than that of withdrawal time ≤6 minutes (25.30% vs 21.14%; odds ratio 0.877, 95% confidence interval 0.667-1.153, P = 0.35). DISCUSSION: The POF was strongly correlated with ADR. The combined assessment of the POF and withdrawal time has profound significance for colonoscopy quality control.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , Colorectal Neoplasms/diagnosis , Retrospective Studies , Colonoscopy , Adenoma/diagnosis , Time Factors
16.
Turk J Gastroenterol ; 34(2): 170-176, 2023 02.
Article in English | MEDLINE | ID: mdl-36620932

ABSTRACT

OBJECTIVE: The aim of this study is to assess levels of monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio in primary biliary cholangitis patients and excavate their clinical significance. METHODS: The levels of monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio in the primary biliary cholangitis, autoimmune hepatitis, and healthy controls were compared, and correlations between monocyte-to-lymphocyte ratio, red cell distribution width-to-lymphocyte ratio, and Mayo score were analyzed. The area under the receiver operating characteristic curve was utilized to analyze the diagnostic value of monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio for primary biliary cholangitis. RESULTS: Monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio in primary biliary cholangitis were higher than they were in autoimmune hepatitis and healthy controls (each, P < .05). Area under the s of monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio in diagnosis of primary biliary cholangitis were 0.821 and 0.797, respectively (each, P < .001). The combination of monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio increased the diagnostic value of primary biliary cholangitis (area under the receiver operating characteristic curve = 0.868, P < .001). The correlation analysis showed that monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio were positively correlated with Mayo score (r-MLR = 0.459, r-RLR = 0.522, P < .001 for each). Red cell distribution width-to-lymphocyte ratio was independently associated with Mayo score (P = .036) by multiple linear regression. In primary biliary cholangitis patients with Child-Pugh classification, monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio levels in class B and class C were significantly higher than in class A (each, P < .05). CONCLUSION: Elevated levels of monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio may prove to be useful markers for estimating the prognosis of primary biliary cholangitis, and the combined detection of monocyte-to-lymphocyte ratio and red cell distribution width-to-lymphocyte ratio has some clinical diagnostic value in patients with primary biliary cholangitis.


Subject(s)
Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , Humans , Prognosis , Erythrocyte Indices , Monocytes , Lymphocytes , Retrospective Studies
17.
BMC Plant Biol ; 23(1): 40, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36650432

ABSTRACT

The SPL gene is a plant-specific transcription factor involved in the regulation of plant growth and development, which have been identified in woody plants. The process of floral bud differentiation affects the timing of flowering and fruit set and regulates plant growth, however, the mechanism of regulation of flower development by SPL genes is less studied. In this study, 56 VcSPL genes were identified in the tetraploid blueberry. The VcSPL gene family was classified into six subfamilies, and analysis of cis-elements showed that VcSPL genes were regulated by light, phytohormones (abscisic acid, MeJA), and low temperature. In the evolutionary analysis, segmental replication may play an important role in VcSPL gene amplification. Interestingly, we also studied diploid blueberry (Bilberry), in which 24 SPL genes were identified, and 36 homologous pairs were found, suggesting a high degree of convergence in the syntenic relationship between blueberry (Vaccinium corymbosum L) and bilberry (Vaccinium darrowii). Based on the expression profile, VcSPL genes were expressed at high levels in flowers, shoots, and roots, indicating a diversity of gene functions. Then we selected 20 differentially-expressed SPL genes to further investigate the role of VcSPL in floral induction and initiation. It showed that the genes VcSPL40, VcSPL35, VcSPL45, and VcSPL53 may play a crucial role in the blueberry floral transition phase (from vegetative growth to flower initiation). These results provided important information for understanding and exploring the role of VcSPLs in flower morphogenesis and plant growth.


Subject(s)
Blueberry Plants , Flowers , Cold Temperature , Plant Growth Regulators/metabolism , Morphogenesis , Gene Expression Regulation, Plant
18.
JAMA Netw Open ; 6(1): e2253840, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36719680

ABSTRACT

Importance: Time of day was associated with a decline in adenoma detection during colonoscopy. Artificial intelligence (AI) systems are effective in improving the adenoma detection rate (ADR), but the performance of AI during different times of the day remains unknown. Objective: To validate whether the assistance of an AI system could overcome the time-related decline in ADR during colonoscopy. Design, Setting, and Participants: This cohort study is a secondary analysis of 2 prospective randomized controlled trials (RCT) from Renmin Hospital of Wuhan University. Consecutive patients undergoing colonoscopy were randomly assigned to either the AI-assisted group or unassisted group from June 18, 2019, to September 6, 2019, and July 1, 2020, to October 15, 2020. The ADR of early and late colonoscopy sessions per half day were compared before and after the intervention of the AI system. Data were analyzed from March to June 2022. Exposure: Conventional colonoscopy or AI-assisted colonoscopy. Main Outcomes and Measures: Adenoma detection rate. Results: A total of 1780 patients (mean [SD] age, 48.61 [13.35] years, 837 [47.02%] women) were enrolled. A total of 1041 procedures (58.48%) were performed in early sessions, with 357 randomized into the unassisted group (34.29%) and 684 into the AI group (65.71%). A total of 739 procedures (41.52%) were performed in late sessions, with 263 randomized into the unassisted group (35.59%) and 476 into the AI group (64.41%). In the unassisted group, the ADR in early sessions was significantly higher compared with that of late sessions (13.73% vs 5.70%; P = .005; OR, 2.42; 95% CI, 1.31-4.47). After the intervention of the AI system, as expected, no statistically significant difference was found (22.95% vs 22.06%, P = .78; OR, 0.96; 95% CI; 0.71-1.29). Furthermore, the AI systems showed better assistance ability on ADR in late sessions compared with early sessions (odds ratio, 3.81; 95% CI, 2.10-6.91 vs 1.60; 95% CI, 1.10-2.34). Conclusions and Relevance: In this cohort study, AI systems showed higher assistance ability in late sessions per half day, which suggests the potential to maintain high quality and homogeneity of colonoscopies and further improve endoscopist performance in large screening programs and centers with high workloads.


Subject(s)
Adenoma , Colonoscopy , Female , Humans , Male , Middle Aged , Adenoma/diagnosis , Artificial Intelligence , Colonoscopy/statistics & numerical data , Randomized Controlled Trials as Topic , Adult , Cohort Studies , Time Factors
19.
J Clin Lab Anal ; 37(1): e24806, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36510353

ABSTRACT

OBJECTIVE: The KRAS gene has a pathophysiological role in the development of many cancers. This study aims to investigate the relationship between KRAS polymorphisms and genetic susceptibility to breast cancer. METHOD: The rs712, rs12587 and rs9266 gene loci in the KRAS gene of 421 subjects (141 breast cancer patients, 141 benign breast tumours and 139 healthy controls) were analysed by the polymerase chain reaction and SNaPshot sequencing. Transcriptomic information on KRAS and corresponding clinical information was downloaded from the TCGA and GTEx databases. Differences in KRAS expression between breast cancer tissues and control tissues were analysed. RESULTS: We found no significant association between KRAS rs712 and rs12587 locus gene polymorphisms and an increased risk of developing benign breast tumours and breast cancer (p > 0.05). The KRAS rs9266 locus mutation heterozygous model CT and dominant model CT + TT were significantly associated with an increased risk of breast cancer (both p < 0.05). In addition, the TAT haplotype was expressed at an increased frequency, and the GAC haplotype was expressed at a reduced frequency in breast cancer compared with controls (both p < 0.05). We found that KRAS was over expressed in breast cancer tumour tissues compared with the control tissues (p < 0.0001). CONCLUSION: The KRAS rs9266 gene polymorphism and the TAT haplotype may be associated with an increased risk of breast cancer in Chinese women. The GAC haplotype may be a protective factor against breast cancer.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Humans , Female , Genetic Predisposition to Disease/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , East Asian People , Gene Frequency , Polymorphism, Single Nucleotide/genetics , Case-Control Studies , Genotype
20.
Dig Endosc ; 35(5): 625-635, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36478234

ABSTRACT

OBJECTIVES: Accurate endoscopic optical prediction of the depth of cancer invasion is critical for guiding an optimal treatment approach of large sessile colorectal polyps but was hindered by insufficient endoscopists expertise and inter-observer variability. We aimed to construct a clinically applicable artificial intelligence (AI) system for the identification of presence of cancer invasion in large sessile colorectal polyps. METHODS: A deep learning-based colorectal cancer invasion calculation (CCIC) system was constructed. Multi-modal data including clinical information, white light (WL) and image-enhanced endoscopy (IEE) were included for training. The system was trained using 339 lesions and tested on 198 lesions across three hospitals. Man-machine contest, reader study and video validation were further conducted to evaluate the performance of CCIC. RESULTS: The overall accuracy of CCIC system using image and video validation was 90.4% and 89.7%, respectively. In comparison with 14 endoscopists, the accuracy of CCIC was comparable with expert endoscopists but superior to all the participating senior and junior endoscopists in both image and video validation set. With CCIC augmentation, the average accuracy of junior endoscopists improved significantly from 75.4% to 85.3% (P = 0.002). CONCLUSIONS: This deep learning-based CCIC system may play an important role in predicting the depth of cancer invasion in colorectal polyps, thus determining treatment strategies for these large sessile colorectal polyps.


Subject(s)
Colonic Polyps , Colorectal Neoplasms , Humans , Colonic Polyps/surgery , Colonic Polyps/pathology , Artificial Intelligence , Colonoscopy/methods , Endoscopy, Gastrointestinal , Colorectal Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...