Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
RSC Adv ; 14(24): 16727-16735, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784411

ABSTRACT

Low catalytic efficiency and catalyst recovery are the key factors limiting the practical application of advanced oxidation processes. In this work, a core-shell magnetic nanostructure Fe3O4@MIL-101(Fe, Co) was prepared via a simple solvothermal method. The core-shell structure and magnetic recovery performance were characterized by various technologies. The results of dye degradation experiments proved that within 10 minutes, the Fe3O4@MIL-101(Fe, Co)/PMS system can degrade more than 95% of 10 mg per L Rhodamine (RhB) at an initial pH of 7, which possesses higher catalytic activity than the Fe3O4/PMS system and the MIL-101(Fe, Co)/PMS system. The effects of initial solution pH and coexisting anions in water on the degradation of RhB were further discussed. The results showed that Fe3O4@MIL-101(Fe, Co) displayed excellent degradation efficiency in a wide pH range of 3-11 and capability of resisting coexisting anions. It is worth mentioning that after five cycles, the RhB removal rate can still be maintained at over 90% after 10 minutes of reaction. Free radical quenching experiments were further studied, confirming that ˙OH and SO4-˙ were involved in the degradation of RhB, while the dominating active free radical was SO4-˙. The possible reaction mechanism of the RhB degradation process was also inferred.

2.
Biosci Trends ; 18(1): 11-20, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38325824

ABSTRACT

Tuberculosis (TB) is one of the top ten causes of death worldwide, taking the lives of over a million people annually. In addition to being a serious health issue, TB is also closely linked to eradicating poverty according to the Sustainable Development Goals (SDGs) of the United Nations (UN). All UN members have committed to ending the TB epidemic by 2030. China has one of the highest TB loads worldwide, ranking third in the world on many TB burden indices. The national strategy for TB control is aimed at creating a collaborative network and integrating TB treatment into the medical system. According to the WHO's global TB report, China is expected to have 748,000 new cases of TB in 2022 and an incidence of 52 cases per 100,000 people. Ending TB remains a huge challenge and requires comprehensive control strategies in China. In this work, we have discussed the challenges of TB prevention and control in China and proposed specific measures to end TB.


Subject(s)
Tuberculosis , Humans , Tuberculosis/epidemiology , Tuberculosis/prevention & control , China/epidemiology
3.
Environ Sci Technol ; 57(38): 14482-14492, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37699122

ABSTRACT

It is critical to discover a non-noble metal catalyst with high catalytic activity capable of replacing palladium in electrochemical reduction. In this work, a highly efficient single-atom Co-N/C catalyst was synthesized with metal-organic frameworks (MOFs) as a precursor for electrochemical dehalogenation. X-ray absorption spectroscopy (XAS) revealed that Co-N/C exhibited a Co-N4 configuration, which had more active sites and a faster charge-transfer rate and thus enabled the efficient removal of florfenicol (FLO) at a wide pH, achieving a rate constant 3.5 and 2.1 times that of N/C and commercial Pd/C, respectively. The defluorination and dechlorination efficiencies were 67.6 and 95.6%, respectively, with extremely low Co leaching (6 µg L-1), low energy consumption (22.7 kWh kg-1), and high turnover frequency (TOF) (0.0350 min-1), demonstrating excellent dehalogenation performance. Spiking experiments and density functional theory (DFT) verified that Co-N4 was the active site and had the lowest energy barrier for forming atomic hydrogen (H*) (ΔGH*). Capture experiments, electron paramagnetic resonance (EPR), electrochemical tests, and in situ Fourier transform infrared (FTIR) proved that H* and direct electron transfer were responsible for dehalogenation. Toxicity assessment indicated that FLO toxicity decreased significantly after dehalogenation. This work develops a non-noble metal catalyst with broad application prospects in electrocatalytic dehalogenation.


Subject(s)
Cobalt , Palladium , Catalysis , Electron Spin Resonance Spectroscopy
4.
J Hazard Mater ; 456: 131696, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37245365

ABSTRACT

This study devised a straightforward one-step approach that enabled simultaneous boron (B) doping and oxygen vacancies (OVs) production on Bi2Sn2O7 (BSO) (B-BSO-OV) quantum dots (QDs), optimizing the electrical structure of the photoelectrodes. Under light-emitting diode (LED) illumination and a low potential of 1.15 V, B-BSO-OV demonstrated effective and stable photoelectrocatalytic (PEC) degradation of sulfamethazine (SMT), achieving the first-order kinetic rate constant of 0.158 min-1. The surface electronic structure, the different factors influencing the PEC degradation of SMT, and the degradation mechanism were studied. Experimental studies have shown that B-BSO-OV exhibits strong visible light trapping ability, high electron transport ability, and superior PEC performance. DFT calculations show that the presence of OVs on BSO successfully reduces the band gap, controls the electrical structure, and accelerates charge transfer. This work sheds light on the synergistic effects of the electronic structure of B-doping and OVs in heterobimetallic oxide BSO under the PEC process and offers a promising approach for the design of photoelectrodes.

5.
Indian J Microbiol ; 62(3): 374-383, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35974910

ABSTRACT

Purpose: To investigated the changes of gut microbiome and fecal metabolome during anti-tuberculosis chemotherapy with isoniazid (H)-rifampin (R)-pyrazinamide (Z)-ethambutol (E). Patients and methods: (1) In this study, we recruited 168 stool specimens from 49 healthy volunteers without M. tuberculosis (Mtb), 30 healthy volunteers with latently infected by Mtb, 41 patients with active tuberculosis (ATB), 28 patients with 2-month HRZE treatment and 20 patients with 2-month HRZE followed by 4-month HR treatment. (2) We used 16S rRNA sequencing and an untargeted Liquid Chromatograph Mass Spectrometer-based metabolomics to investigate the changes of gut microbiome and the alteration of fecal metabolome, respectively, during anti-TB chemotherapy. Results: Mtb infection can reduce the diversity of intestinal flora of ATB patients and change their taxonomic composition, while the diversity of intestinal flora of ATB patients were restored during anti-TB chemotherapy. Especially, family Veillonellacea and Bateroidaceae and their genera Veillonella and Bacteroides significantly increased in the gut microbiota during anti-TB chemotherapy. Additionally, Mtb infection dynamically regulates fecal metabolism in ATB patients during anti-TB chemotherapy. Interestingly, the altered abundance of fecal metabolites correlated with the altered gut microbiota, especially the change of gut Clostridium, Bacteroides and Prevotella was closely related to the change of fecal metabolites such as Trans-4-Hydroxy-L-proline and Genistein caused by Mtb infection or anti-TB chemotherapy. Conclusion: Anti-TB chemotherapy with HRZE can disrupt both gut microbiotas and metabolome in ATB patients. Some specific genera and metabolites are depleted or enriched during anti-TB chemotherapy. Therefore, revealing potential relevance between gut microbiota and anti-TB chemotherapy will provide potential biomarkers for evaluating the therapeutic efficacy in ATB patients. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01003-2.

6.
J Hazard Mater ; 430: 128402, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35149500

ABSTRACT

The oxygen reduction reaction (ORR) activated by Fe0 in the presence of three aminopolycarboxylic acids (CAs), i.e. nitrilotriacetic acid (NTA), ethylenediamine-N,N'-disuccinic acid (EDDS) and ethylenediaminetetraacetic acid (EDTA), for the degradation of sulfamethazine (SMT) was investigated. At optimum conditions, Fe0/EDDS/O2, Fe0/EDTA/O2 and Fe0/NTA/O2 systems presented SMT removal of 58.2%, 75.3% and 93.8%, respectively, being much higher than that in the Fe0/O2 system (1.36%). The generation of surface-bound Fe2+ (Fe2+) and dissolved iron ion was enhanced by CAs. ORR through a two-electron transfer pathway was mainly responsible for H2O2 generation in NTA and EDTA systems, while a single-electron ORR was the major source for producing H2O2 in EDDS system. •OH produced by the homogeneous reaction of Fe2+ and H2O2 was the main species for SMT degradation. Fe0/EDDS/O2 produced more 1O2 than Fe0/EDTA/O2 and Fe0/NTA/O2; however, the radical contributed negligibly to SMT removal. The caging effect of CAs might be a major factor influencing the reaction rate of Fe2+ and O2. CAs provided protons to accelerate the electron transfer, the production of Fe2+ and thus the contaminant removal. This study is of great significance for revealing ORR mechanisms in the Fe0-chelate system.


Subject(s)
Iron , Oxidants , Electrons , Hydrogen Peroxide , Oxidation-Reduction , Oxygen , Protons
7.
Hereditas ; 158(1): 31, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34419146

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting people's health worldwide. Exploring the potential biomarkers and dynamic networks during NAFLD progression is urgently important. MATERIAL AND METHODS: Differentially expressed genes (DEGs) in obesity, NAFL and NASH were screened from GSE126848 and GSE130970, respectively. Gene set enrichment analysis of DEGs was conducted to reveal the Gene Ontology (GO) biological process in each period. Dynamic molecular networks were constructed by DyNet to illustrate the common and distinct progression of health- or obesity-derived NAFLD. The dynamic co-expression modular analysis was carried out by CEMiTool to elucidate the key modulators, networks, and enriched pathways during NAFLD. RESULTS: A total of 453 DEGs were filtered from obesity, NAFL and NASH periods. Function annotation showed that health-NAFLD sequence was mainly associated with dysfunction of metabolic syndrome pathways, while obesity-NAFLD sequence exhibited dysregulation of Cell cycle and Cellular senescence pathways. Nine nodes including COL3A1, CXCL9, CYCS, CXCL10, THY1, COL1A2, SAA1, CDKN1A, and JUN in the dynamic networks were commonly identified in health- and obesity-derived NAFLD. Moreover, CYCS, whose role is unknown in NAFLD, possessed the highest correlation with NAFLD activity score, lobular inflammation grade, and the cytological ballooning grade. Dynamic co-expression modular analysis showed that module 4 was activated in NAFL and NASH, while module 3 was inhibited at NAFLD stages. Module 3 was negatively correlated with CXCL10, and module 4 was positively correlated with COL1A2 and THY1. CONCLUSION: Dynamic network analysis and dynamic gene co-expression modular analysis identified a nine-gene signature as the potential key regulator in NAFLD progression, which provided comprehensive regulatory mechanisms underlying NAFLD progression.


Subject(s)
Gene Regulatory Networks , Non-alcoholic Fatty Liver Disease/genetics , Biomarkers , Female , Humans , Male , Metabolic Syndrome/genetics , Middle Aged , Obesity/genetics , Oligonucleotide Array Sequence Analysis
8.
ACS Appl Mater Interfaces ; 12(39): 43741-43749, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32867469

ABSTRACT

In this work, hydrothermally prepared p-n heterojunction BiOBr/SnO2 photocatalysts were applied to eliminate NO in visible light. The as-synthesized BiOBr/SnO2 photocatalysts exhibit superior photocatalytic activity and stability through the establishment of a p-n heterojunction, resulting in a significant improvement in charge separation and transfer properties. The morphological structure and optical property of the BiOBr/SnO2 heterojunction were also investigated comprehensively. Extended light absorption into the visible range was achieved by SnO2 coating on the surface of the BiOBr microsphere through the constructed heterojunction between BiOBr and SnO2, thus achieving efficient NO removal. Moreover, the transfer channels and directions of charge at the BiOBr/SnO2 interface were determined by a combination of theoretical calculations and experimental studies. Within this p-n heterojunction, the charge in SnO2 migrates into BiOBr through the preformed electron transfer channels, thus generating an internal electric field (IEF) between SnO2 and BiOBr. Under the influence of IEF, the photogenerated electrons of BiOBr migrate from the conduction band (CB) to the CB of SnO2, thus promoting the separation of electrons (e-)-holes (h+) pairs. The intermediates and final products were monitored by the in situ DRIFTS technology in the process of removal of NO in visible light; hence, the oxidation pathways of NO were reasonably proposed. Meanwhile, the construction of the heterojunction not only achieves more efficient NO photocatalytic oxidation but also inhibits the production of more toxic NO2. This work provides mechanistic insights into the interfacial charge transfer for heterojunction photocatalysts and reaction mechanism for efficient air purification.

9.
J Hazard Mater ; 400: 123174, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32569988

ABSTRACT

Photocatalysis technology has been extensively adopted to abate typical air pollutants. Nevertheless, it is a challenge to develop photocatalysts aiming to simultaneously improve photocatalytic selectivity and efficiency. In this study, to improve the photocatalytic selectivity and the performance of (BiO)2CO3 in the oxidation of NO to target products (NO2- /NO3-), we developed a novel method to construct La-doped (BiO)2CO3 (La-BOC) for forming localized excess electrons (Ex) on (BiO)2CO3 surface. The results indicate that the Ex could effectively accelerate the activation of reactants and promote charge separation and transfer. Under visible light, the gas molecules could capture the Ex and get activated to produce reactive oxygen species (ROS) with high oxidation ability, which enables complete oxidation of NO to target products instead of producing other toxic by-products. Due to the functionality of the Ex, the photocatalytic selectivity and efficiency of La-BOC have been synchronously improved. Combining experimental and theoretical methods, this work unravels the pathway of charge carriers transportation/transformation and elucidates the photocatalytic NO oxidation mechanism. The present work could provide a novel method to improve photocatalytic selectivity and activity for safe air pollutant abatement.

10.
J Mol Evol ; 88(2): 202-209, 2020 03.
Article in English | MEDLINE | ID: mdl-31919584

ABSTRACT

Drug-resistant Mycobacterium tuberculosis (M. tuberculosis) has become an increasingly serious public health problem and has complicated tuberculosis (TB) treatment. Levofloxacin (LOF) is an ideal anti-tuberculosis drug in clinical applications. However, the detailed molecular mechanisms of LOF-resistant M. tuberculosis in TB treatment have not been revealed. Our study performed transcriptome and methylome sequencing to investigate the potential biological characteristics of LOF resistance in M. tuberculosis H37Rv. In the transcriptome analysis, 953 differentially expressed genes (DEGs) were identified; 514 and 439 DEGs were significantly downregulated and upregulated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 97 pathways were enriched in this study. In the methylome analysis, 239 differentially methylated genes (DMGs) were identified; 150 and 89 DMGs were hypomethylated and hypermethylated in the LOF-resistant group and control group, respectively. The KEGG pathway analysis revealed that 74 pathways were enriched in this study. The overlap study suggested that 25 genes were obtained. It was notable that nine genes expressed downregulated mRNA and upregulated methylated levels, including pgi, fadE4, php, cyp132, pckA, rpmB1, pfkB, acg, and ctpF, especially cyp132, pckA, and pfkB, which were vital in LOF-resistant M. tuberculosis H37Rv. The overlapping genes between transcriptome and methylome could be essential for studying the molecular mechanisms of LOF-resistant M. tuberculosis H37Rv. These results may provide informative evidence for TB treatment with LOF.


Subject(s)
Drug Resistance, Bacterial/genetics , Epigenome , Levofloxacin/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Transcriptome , Anti-Bacterial Agents/pharmacology , DNA Methylation , Genes, Bacterial
11.
Int J Infect Dis ; 86: 94-101, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31247342

ABSTRACT

OBJECTIVES: The aim of this study was to understand how tuberculosis (TB) control institutes raise awareness of TB among domestic migrants in China, specifically whether migrants have received TB information and how they received it. METHODS: This multi-level analysis included both county-level data and individual-level data covering 31 provinces in mainland China. Multi-level logistic models were used to explore the factors associated with receiving TB information. RESULTS: This analysis included 205 990 migrants from 31 provinces and municipalities. Only 77 460 (37.60%) migrants reportedly received any TB information in mainland China. The center for disease control and prevention (CDC), the center for tuberculosis control (CTC), and the center for prevention and treatment of chronic diseases (CPTCD) were the most likely to provide TB information for migrants in comparison to other types of TB control institutes, such as general hospitals, specialized hospitals, and community healthcare centers. The odds ratios were calculated as: 1.563 (95% confidence interval (CI) 1.246-1.959) for CDCs, 1.385 (95% CI 1.063-1.804) for CTCs, and 1.723 (95% CI 1.424-2.085) for CPTCDs. CONCLUSIONS: China has not achieved universal coverage of TB awareness. TB awareness levels are higher in regions with CDC, CTC, and CPTCD institutes. Domestic migrants who have moved to western areas are more likely to have received TB information.


Subject(s)
Health Communication , Transients and Migrants , Academies and Institutes , Adult , China , Cities , Cross-Sectional Studies , Female , Humans , Logistic Models , Male , Odds Ratio , Tuberculosis/prevention & control
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(6): 1474-7, 2010 Jun.
Article in Chinese | MEDLINE | ID: mdl-20707132

ABSTRACT

The blood glucose concentrations of volunteers from diabetes patients and healthy adults (all patients and volunteers who joined this experiment gave their consents) were measured by using a modified WQF-200 FTIR spectrometer with a newly designed ATR accessory from the Beijing Rayleigh Analytical Instrument Corp. The determination basis for this technique from the physiological point of view is also discussed based on the experimental results, which indicated that the glucose measured by the FT-Mid-IR ATR instrument is from the secretions on the skin and glucose components within the body. The secreted glucose components will increase with the time increasing. The authors' previous study demonstrated 1 120 cm(-1) band as an index to characterize the blood glucose. During the experiments, the authors used the band of 1 455 cm(-1) as internal standard because of its stability, and because the relative intensity of I1 120/I1 455 band possesses the higher sensitivity. Meanwhile, from the spectra, the relative intensity of I1 120/I1 455 band of the glucose in both sources exhibits a linear relationship with blood glucose concentration within the body. The dried blood has the similar spectra as fingers'. The fingers' spectra will exhibit higher sensitivity if the time of measurement is longer after washing hand, and the results showed that when measured 10 minutes after washing hand, the sensitivity will be higher than that when measured 4 minutes after washing hand. All the results can be used in promoting a convenient, rapid and noninvasive way to monitor the continuous variation of blood glucose concentration of diabetes patients in real time.


Subject(s)
Blood Glucose/analysis , Monitoring, Physiologic/methods , Spectroscopy, Fourier Transform Infrared , Adult , Diabetes Mellitus , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...