Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38543237

ABSTRACT

Liposomes as carriers for CRISPR/Cas9 complexes represent an attractive approach for cardiovascular gene therapy. A critical barrier to this approach remains the efficient delivery of CRISPR-based genetic materials into cardiomyocytes. Echogenic liposomes (ELIP) containing a fluorescein isothiocyanate-labeled decoy oligodeoxynucleotide against nuclear factor kappa B (ELIP-NF-κB-FITC) were used both in vitro on mouse neonatal ventricular myocytes and in vivo on rat hearts to assess gene delivery efficacy with or without ultrasound. In vitro analysis was then repeated with ELIP containing Cas9-sg-IL1RL1 (interleukin 1 receptor-like 1) RNA to determine the efficiency of gene knockdown. ELIP-NF-κB-FITC without ultrasound showed limited gene delivery in vitro and in vivo, but ultrasound combined with ELIP notably improved penetration into heart cells and tissues. When ELIP was used to deliver Cas9-sg-IL1RL1 RNA, gene editing was successful and enhanced by ultrasound. This innovative approach shows promise for heart disease gene therapy using CRISPR technology.

2.
Int J Exp Pathol ; 101(1-2): 45-54, 2020 02.
Article in English | MEDLINE | ID: mdl-32436348

ABSTRACT

Oral cancer causes significant global mortality and has a five-year survival rate of around 64%. Poor prognosis results from late-stage diagnosis, highlighting an important need to develop better approaches to detect oral premalignant lesions (OPLs) and identify which OPLs are at highest risk of progression to oral squamous cell carcinoma (OSCC). An appropriate animal model that reflects the genetic, histologic, immunologic, molecular and gross visual features of human OSCC would aid in the development and evaluation of early detection and risk assessment strategies. Here, we present an experimental PIK3CA + 4NQO transgenic mouse model of oral carcinogenesis that combines the PIK3CA oncogene mutation with oral exposure to the chemical carcinogen 4NQO, an alternate experimental transgenic mouse model with PIK3CA as well as E6 and E7 mutations, and an existing wild-type mouse model based on oral exposure to 4NQO alone. We compare changes in dorsal and ventral tongue gross visual appearance, histologic features and molecular biomarker expression over a time course of carcinogenesis. Both transgenic models exhibit cytological and architectural features of dysplasia that mimic human disease and exhibit slightly increased staining for Ki-67, a cell proliferation marker. The PIK3CA + 4NQO model additionally exhibits consistent lymphocytic infiltration, presents with prominent dorsal and ventral tongue tumours, and develops cancer quickly relative to the other models. Thus, the PIK3CA + 4NQO model recapitulates the multistep genetic model of human oral carcinogenesis and host immune response in carcinogen-induced tongue cancer, making it a useful resource for future OSCC studies.


Subject(s)
Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Mutation , Quinolones , Squamous Cell Carcinoma of Head and Neck/chemically induced , Squamous Cell Carcinoma of Head and Neck/genetics , Tongue Neoplasms/chemically induced , Tongue Neoplasms/genetics , 4-Nitroquinoline-1-oxide , Animals , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Disease Progression , Lymphocytes/pathology , Mice, Inbred CBA , Mice, Transgenic , Oncogene Proteins, Viral/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Time Factors , Tongue Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL