Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
1.
PLoS One ; 19(6): e0304972, 2024.
Article in English | MEDLINE | ID: mdl-38905170

ABSTRACT

Several studies have reported the efficacy of traditional Chinese medicine (TCM) for central serous chorioretinopathy (CSC), while some ophthalmologists are concerned that TCM may be a risk factor for CSC as some chinese herbs contain hormonal ingredients. This study aimed to evaluate the efficacy and safety of TCM in treating patients with CSC. Randomized controlled trials (RCTs) and observational studies of TCM for CSC were searched up to July 10, 2023 on the following biological databases without language and publication time restrictions: PubMed, Ovid Medline, Embase, Cochrane Library, The Chinese National Knowledge Infrastructure Database (CNKI), Technology Periodical Database (VIP), Wanfang, and Chinese Biomedical Literature Service System (SinoMed). Review Manager V.5.4.1 and Stata 14 software were used for data analysis. Finally, thirty-eight studies were finally included including 23 RCTs and 15 cohort studies. The meta-analysis showed that compared with the routine treatment alone, the combination of TCM can not only reduce the recurrence rate (OR = 0.29, 95% CI: 0.21,0.40; I2 = 0%) and central retinal thickness (CRT) (MD = - 35.63, 95% CI: - 45.96,-25.30; I2 = 89%) of CSC, but improve patients' best corrected visual acuity (BCVA) (SMD = 0.86, 95% CI: 0.62,1.11; I2 = 77%); additionally, it has no obvious side effects compared with routine treatment (OR = 0.72, 95% CI: 0.39,1.34; I2 = 10%). Overall, this study shows that the use of TCM does not increase the risk of CSC recurrence; on the contrary, the combination of TCM may reduce the recurrence of CSC and improve BCVA and CRT in patients with CSC compared with conventional treatment.


Subject(s)
Central Serous Chorioretinopathy , Medicine, Chinese Traditional , Central Serous Chorioretinopathy/drug therapy , Humans , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/therapeutic use , Treatment Outcome , Randomized Controlled Trials as Topic , Visual Acuity/drug effects
2.
Mol Breed ; 44(7): 45, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911334

ABSTRACT

The brown planthopper (Nilaparvata lugens Stål, BPH) is the most destructive pest of rice (Oryza sativa L.). Utilizing resistant rice cultivars that harbor resistance gene/s is an effective strategy for integrated pest management. Due to the co-evolution of BPH and rice, a single resistance gene may fail because of changes in the virulent BPH population. Thus, it is urgent to explore and map novel BPH resistance genes in rice germplasm. Previously, an indica landrace from India, Paedai kalibungga (PK), demonstrated high resistance to BPH in both in Wuhan and Fuzhou, China. To map BPH resistance genes from PK, a BC1F2:3 population derived from crosses of PK and a susceptible parent, Zhenshan 97 (ZS97), was developed and evaluated for BPH resistance. A novel BPH resistance locus, BPH39, was mapped on the short arm of rice chromosome 6 using next-generation sequencing-based bulked segregant analysis (BSA-seq). BPH39 was validated using flanking markers within the locus. Furthermore, near-isogenic lines carrying BPH39 (NIL-BPH39) were developed in the ZS97 background. NIL-BPH39 exhibited the physiological mechanisms of antibiosis and preference toward BPH. BPH39 was finally delimited to an interval of 84 Kb ranging from 1.07 to 1.15 Mb. Six candidate genes were identified in this region. Two of them (LOC_Os06g02930 and LOC_Os06g03030) encode proteins with a similar short consensus repeat (SCR) domain, which displayed many variations leading to amino acid substitutions and showed higher expression levels in NIL-BPH39. Thus, these two genes are considered reliable candidate genes for BPH39. Additionally, transcriptome sequencing, DEGs analysis, and gene RT-qPCR verification preliminary revealed that BPH39 may be involved in the jasmonic acid (JA) signaling pathway, thus mediating the molecular mechanism of BPH resistance. This work will facilitate map-based cloning and marker-assisted selection for the locus in breeding programs targeting BPH resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01485-6.

3.
Heliyon ; 10(11): e31871, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868032

ABSTRACT

Background: Transient receptor potential melastatin 4 (TRPM4) affects immune responses by regulating calcium homeostasis, but its role in calcific aortic valve inflammation remains unclear. This study aimed to assess the expression and function of TRPM4 in patients with or without calcific aortic valve disease (CAVD). Methods: The mRNA and protein expression levels of TRPM4 and related factors in calcified and noncalcified tissues were measured using qRT-PCR and Western blot. The proteins interacting with TRPM4 were confirmed by RNA pull-down and RNA immunoprecipitation assays. Dual-Luciferase Reporter Assay was performed to confirm the m6A site of TRPM4. Results: The mRNA expression levels of TRPM4, TLR4, IL-6, MCP-1, TNF-α, and NF-κB p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues, and TRPM4 was significantly positively correlated with inflammation-related factors. The protein expression level of TRPM4, TLR4 and NF-κB p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues. N6-methyladenosine (m6A) modification of TRPM4 mRNA by METTL3-YTHDF1 up-regulated its expression in CAVD. And TRPM4 promoted the level of inflammation via activation of the JNK-MAPK signaling pathway, after knockdown TRPM4, the production of proinflammatory cytokines was significantly suppressed. Conclusion: The results indicate the pivotal role of TRPM4 in CAVD and highlight METTL3-mediated m6A modification of TRPM4 in promoting inflammation through JNK-MAPK signaling pathway. This work provides potential therapeutic strategy to impede inflammation in CAVD.

4.
Medicine (Baltimore) ; 103(24): e38556, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875377

ABSTRACT

This study aimed to assess hematological diseases next-generation sequencing (NGS) panel enhances the diagnosis and classification of myeloid neoplasms (MN) using the 5th edition of the WHO Classification of Hematolymphoid Tumors (WHO-HAEM5) and the International Consensus Classification (ICC) of Myeloid Tumors. A cohort of 112 patients diagnosed with MN according to the revised fourth edition of the WHO classification (WHO-HAEM4R) underwent testing with a 141-gene NGS panel for hematological diseases. Ancillary studies were also conducted, including bone marrow cytomorphology and routine cytogenetics. The cases were then reclassified according to WHO-HAEM5 and ICC to assess the practical impact of these 2 classifications. The mutation detection rates were 93% for acute myeloid leukemia (AML), 89% for myelodysplastic syndrome (MDS), 94% for myeloproliferative neoplasm (MPN), and 100% for myelodysplasia/myeloproliferative neoplasm (MDS/MPN) (WHO-HAEM4R). NGS provided subclassified information for 26 and 29 patients with WHO-HAEM5 and ICC, respectively. In MPN, NGS confirmed diagnoses in 16 cases by detecting JAK2, MPL, or CALR mutations, whereas 13 "triple-negative" MPN cases revealed at least 1 mutation. NGS panel testing for hematological diseases improves the diagnosis and classification of MN. When diagnosed with ICC, NGS produces more classification subtype information than WHO-HAEM5.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutation , Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , High-Throughput Nucleotide Sequencing/methods , Female , Male , Middle Aged , Aged , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/classification , Adult , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/classification , Aged, 80 and over , Janus Kinase 2/genetics , World Health Organization , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/diagnosis , Receptors, Thrombopoietin/genetics , Calreticulin/genetics , Young Adult
5.
Mol Ther Nucleic Acids ; 35(2): 102190, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38721279

ABSTRACT

RNA base editors should ideally be free of immunogenicity, compact, efficient, and specific, which has not been achieved for C > U editing. Here we first describe a compact C > U editor entirely of human origin, created by fusing the human C > U editing enzyme RESCUE-S to Cas inspired RNA targeting system (CIRTS), a tiny, human-originated programmable RNA-binding domain. This editor, CIRTS-RESCUEv1 (V1), was inefficient. Remarkably, a short histidine-rich domain (HRD), which is derived from the internal disordered region (IDR) in the human CYCT1, a protein capable of liquid-liquid phase separation (LLPS), enhanced V1 editing at on-targets as well as off-targets, the latter effect being minor. The V1-HRD fusion protein formed puncta characteristic of LLPS, and various other IDRs (but not an LLPS-impaired mutant) could replace HRD to effectively induce puncta and potentiate V1, suggesting that the diverse domains acted via a common, LLPS-based mechanism. Importantly, the HRD fusion strategy was applicable to various other types of C > U RNA editors. Our study expands the RNA editing toolbox and showcases a general method for stimulating C > U RNA base editors.

6.
Article in English | MEDLINE | ID: mdl-38814574

ABSTRACT

Phosphorylation, the most extensive and pleiotropic form of protein post-translation modification, is central to cellular signal transduction. Throughout the extensive co-evolution of plant hosts and viruses, modifications to phosphorylation have served multiple purposes. Such modifications highlight the evolutionary trajectories of viruses and their hosts, with pivotal roles in regulation and refinement of host-virus interactions. In plant hosts, protein phosphorylation orchestrates immune responses, enhancing the activities of defense-related proteins such as kinases and transcription factors, thereby strengthening pathogen resistance in plants. Moreover, phosphorylation influences the interactions between host and viral proteins, altering viral spread and replication within host plants. In the context of plant viruses, protein phosphorylation controls key aspects of the infection cycle, including viral protein functionality and the interplay between viruses and host plant cells, leading to effects on viral accumulation and dissemination within plant tissues. Explorations of the nuances of protein phosphorylation in plant hosts and their interactions with viruses are particularly important. This review provides a systematic summary of the biological roles of the proteins of plant viruses carrying diverse genomes in regulating infection and host responses through changes in the phosphorylation status.

7.
Angew Chem Int Ed Engl ; 63(27): e202317592, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38650376

ABSTRACT

The highly selective hydrogenation to remove olefins is a significant refining approach for the reformate. Herein, a library of transition metal for reformate hydrogenation is tested experimentally to validate the predictive level of catalytic activity from our theoretical framework, which combines ab initio calculations and microkinetic modeling, with consideration of surface H-coverage effect on hydrogenation kinetics. The favorable H coverage of specific alloy surface under relevant hydrogenation condition, is found to be determined by its corresponding alloy composition. Besides, olefin hydrogenation rate is determined as a function of two descriptors, i.e. H coverage and binding energies of atomic hydrogen, paving the way to computationally screen on metal component in the periodic table. Evaluation of 172 bimetallic alloys based on the activity volcano map, as well as benzene hydrogenation rate, identifies prospective superior candidates and experimentally confirms that Zn3Ir1 outperforms pure Pd catalysts for the selective hydrogenation refining of reformate. The insights into H-coverage-related microkinetic modelling have enabled us to both theoretically understand experimental findings and identify novel catalysts, thus, bridging the gap between first-principle simulations and industrial applications. This work provides useful guidance for experimental catalyst design, which can be easily extended to other hydrogenation reaction.

8.
ACS Omega ; 9(15): 17076-17088, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645320

ABSTRACT

Strong-weak coupling outburst prevention technology can reduce the hazard of coal and gas outburst in mines based on hydraulic punching and grouting reinforcement. In this study, the mechanism of outburst hazards in the strong-weak coupling structure under mining disturbance was explored, and then cyclic loading and unloading experiments were performed on samples with different strong-weak height ratios (HRs) using the noncontact full-field strain testing (DIC) system and the acoustic emission (AE) system. The results show that the failure strength of the sample gradually increases with the increase in HR. The residual strain of the strong and weak structures undergoes three stages, i.e., the decelerated deformation, the constant-velocity deformation, and the accelerated deformation. Deformation mainly occurs in the weak structure and starts at the strong-weak interface. The AE signals present strong regional distribution characteristics and the Felicity effect, and the damage is concentrated near 70% of each stage in the cyclic loading process. As the HR rises, the weak structure transitions from brittle damage to ductile damage and from shear damage to tensile damage. In addition, due to the difference in Poisson effects of strong and weak structures, the strong structure transitions from a unidirectional stress state to a triaxial tensile-compressive stress state. When the HR increases to 85:15, the strong structure undergoes tensile damage.

9.
Sci Rep ; 14(1): 8048, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580804

ABSTRACT

The study aimed to assess the effect and mechanism of safflower injection in preventing retinal vein thrombosis in rabbits. Twenty healthy adult pigmented rabbits were randomly assigned to either the experimental group, receiving safflower injection, or the control group, receiving normal saline. After two weeks of treatment, blood samples were collected to analyze platelet adhesion and aggregation rates. Photodynamic therapy was applied to induce occlusion in the target retinal vein. Fundus photography and fluorescein angiography were recorded using a dynamic microscopic monitoring system, and laser speckle imaging was employed to assess blood flow in the affected vein. The experimental group exhibited significantly lower rates of platelet adhesion and aggregation compared to the control group. Following the induction of retinal vein occlusion, the experimental group showed a lower complete occlusion rate of the target retinal vein. Although initial blood flow in the target vein was similar between groups, the blood flow at 1, 3, and 5 min post-occlusion was significantly higher in the experimental group. Safflower injection delayed retinal vein thrombosis formation, preserved blood flow in the affected retinal area, and reduced platelet adhesion and aggregation. These effects facilitated vascular reperfusion within a limited timeframe.


Subject(s)
Carthamus tinctorius , Retinal Vein Occlusion , Retinal Vein , Animals , Rabbits , Retinal Vein Occlusion/drug therapy , Disease Models, Animal , Retina , Fluorescein Angiography
10.
Mol Metab ; 84: 101942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642890

ABSTRACT

OBJECTIVE: Hepatic glucose metabolism is profoundly perturbed by excessive alcohol intake. miR-141/200c expression is significantly induced by chronic ethanol feeding. This study aimed at identifying the role of miR-141/200c in glucose homeostasis during chronic ethanol exposure. METHODS: WT and miR-141/200c KO mice were fed a control or an ethanol diet for 30 days, followed by a single binge of maltose dextrin or ethanol, respectively. Untargeted metabolomics analysis of hepatic primary metabolites was performed along with analyses for liver histology, gene expression, intracellular signaling pathways, and physiological relevance. Primary hepatocytes were used for mechanistic studies. RESULTS: miR-141/200c deficiency rewires hepatic glucose metabolism during chronic ethanol feeding, increasing the abundance of glucose intermediates including G6P, an allosteric activator for GS. miR-141/200c deficiency replenished glycogen depletion during chronic ethanol feeding accompanied by reduced GS phosphorylation in parallel with increased expression of PP1 glycogen targeting subunits. Moreover, miR-141/200c deficiency prevented ethanol-mediated increases in AMPK and CaMKK2 activity. Ethanol treatment reduced glycogen content in WT-hepatocytes, which was reversed by dorsomorphin, a selective AMPK inhibitor, while KO-hepatocytes displayed higher glycogen content than WT-hepatocytes in response to ethanol treatment. Furthermore, treatment of hepatocytes with A23187, a calcium ionophore activating CaMKK2, lowered glycogen content in WT-hepatocytes. Notably, the suppressive effect of A23187 on glycogen deposition was reversed by dorsomorphin, demonstrating that the glycogen depletion by A23187 is mediated by AMPK. KO-hepatocytes exhibited higher glycogen content than WT-hepatocytes in response to A23187. Finally, miR-141/200c deficiency led to improved glucose tolerance and insulin sensitivity during chronic ethanol feeding. CONCLUSIONS: miR-141/200c deficiency replenishes ethanol-mediated hepatic glycogen depletion through the regulation of GS activity and calcium signaling coupled with the AMPK pathway, improving glucose homeostasis and insulin sensitivity. These results underscore miR-141/200c as a potential therapeutic target for the management of alcohol intoxication.


Subject(s)
Ethanol , Hepatocytes , Liver Glycogen , Liver , Mice, Knockout , MicroRNAs , Animals , Ethanol/pharmacology , Mice , MicroRNAs/metabolism , MicroRNAs/genetics , Hepatocytes/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Male , Mice, Inbred C57BL , Glucose/metabolism
11.
Biochem Genet ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625593

ABSTRACT

Gastric cancer (GC) is the second deadliest disease in Asia, so it is crucial to find its promising therapeutic targets. The expression profile data of miR383-5p in the Cancer Genome Atlas (TCGA) were analyzed. The expression levels of miR383-5p in the collected clinical tissue samples and peripheral blood samples were examined by qPCR, and the relationship between its expression and the clinical data of patients was evaluated. MiR383-5p was overexpressed in the AGS cells, and cell biology assays, such as Transwell, were performed to detect the cell proliferation, migration, invasion and other cell biology abilities of miR383-5p. Target prediction and dual luciferase reporter gene assay were performed to find and validate the target genes of miR383-5p. The expression and activity of MMP and related proteins after overexpression of miR383-5p and NCKAP1 were detected by WB and gelatin zymography assay. The expression of miR383-5p was down-regulated in GC tissues, and its low expression was associated with lymph node metastasis. Restoration of miR383-5p expression in GC cells can inhibit the invasion and migration abilities of GC cells. MiR383-5p negatively regulated NCKAP1 through direct interaction with the 3'UTR sequence of NCKAP1. The overexpression of NCKAP1 can improve the migration and invasion abilities of GC cells, whereas overexpression of miR383-5p can inhibit growth of the aforementioned abilities of GC cells induced by NCKAP1 overexpression. The overexpression of NCKAP1 can increase the expression level and activity of MMP2, while the overexpression of miR383-5p can inhibit the increase of MMP2 expression level and activity in GC cells induced by NCKAP1 overexpression. NCKAP1 is a target gene of miR383-5p, and miR383-5p could be a valuable therapeutic target for stomach adenocarcinoma.

13.
Orthop Traumatol Surg Res ; 110(4): 103853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428485

ABSTRACT

OBJECTIVES: Whether the application of MBP plus cannulated screws works for old femoral neck fractures (OFNF) is unknown. The purpose of this study is to present a case series of OFNF in young adults using calcar buttress plate and three cannulated screws with autologous iliac bone grafts. METHODS: We conducted a retrospective study of eleven young patients (6 males and 5 females) with femoral neck fractures who were treated with open reduction and internal fixation at a single center between 2013 and 2021. The subjects had trauma-to-surgery intervals longer than 3weeks and all were fixed with a calcar buttress plate combined with three cannulated screws, which were supplemented by autologous iliac bone grafts. RESULTS: All eleven cases achieved radiological union under the surgery technique, which occurred on average at 4.46±1.29months after surgery. Complications included femoral neck shortening in all cases, heterotopic ossification in three cases, and osteonecrosis of the femoral head in two cases. One patient with osteonecrosis of the femoral head received total hip arthroplasty. In follow-ups of 24-52months, the median Harris hip score was 81.64±15.39. CONCLUSIONS: The medial buttress plate in combination with three cannulated screws and iliac autograft may be a good choice for treating old femoral neck fractures in young adults. LEVEL OF EVIDENCE: IV, case series.


Subject(s)
Bone Plates , Bone Screws , Bone Transplantation , Femoral Neck Fractures , Fracture Fixation, Internal , Ilium , Humans , Male , Femoral Neck Fractures/surgery , Female , Retrospective Studies , Fracture Fixation, Internal/methods , Adult , Ilium/transplantation , Young Adult , Bone Transplantation/methods , Treatment Outcome , Autografts
14.
Analyst ; 149(8): 2436-2444, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38498083

ABSTRACT

Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 µmol mL-1, 100 fg mL-1-10 µg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.


Subject(s)
Biosensing Techniques , Cellulose/analogs & derivatives , Escherichia coli O157 , Nanofibers , Nanofibers/chemistry , Cellulose/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods
15.
Anal Chim Acta ; 1294: 342282, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38336415

ABSTRACT

BACKGROUND: Ionic calcium (Ca2+) plays a crucial role in maintaining normal physiological and biochemical functions within the human body. Detecting the concentration of Ca2+ is of utmost significance for various purposes, including disease screening, cellular metabolism research, and evaluating drug effectiveness. However, current detection approaches such as fluorescence and colorimetry face limitations due to complex labeling techniques and the inability to track changes in Ca2+ concentration. In recent years, extensive research has been conducted in this field to explore label-free and efficient approaches. RESULTS: In this study, a novel light-addressed potentiometric sensor (LAPS) using silicon-on-sapphire technology, has been successfully developed for Ca2+ sensing. The Ca2+-sensitive LAPS achieved a wide-range detection of Ca2+, ranging from 10-2 M to 10-7 M, with an impressive detection limit of 100 nM. These advancements are attributed to the ultra-thin silicon layer, silicon dioxide layer, and solid-state silicon rubber sensitive membrane around 6 µm. Furthermore, the sensor demonstrated the ability to dynamically monitor fluctuations in Ca2+ concentration ranging from 10-9 M to 10-2 M within a solution. Its remarkable selectivity, specificity, and long-term stability have facilitated its successful application in the detection of Ca2+ in human serum and urine. SIGNIFICANCE AND NOVELTY: This work presents a Ca2+-sensitive sensor that combines a low detection limit and a wide detection range. The development represents the emergence of a label-free and rapid Ca2+ detection tool with immense prospects in home-based health monitoring, community disease screening, as well as cellular metabolism, and drug screening evaluations.


Subject(s)
Aluminum Oxide , Biosensing Techniques , Humans , Calcium , Light , Biosensing Techniques/methods , Potentiometry/methods , Ions
16.
J Gen Virol ; 105(2)2024 02.
Article in English | MEDLINE | ID: mdl-38299799

ABSTRACT

Zika virus (ZIKV) is a re-emerging RNA virus and causes major public health events due to its link to severe neurological complications in foetuses and neonates. The cGAS-STING signalling pathway regulates innate immunity and plays an important role in the invasion of DNA and RNA viruses. This study reveals a distinct mechanism by which ZIKV restricts the cGAS-STING signalling to repress IFN-ß expression. ZIKV attenuates IFN-ß expression induced by DNA viruses (herpes simplex virus type 1, HSV-1) or two double-stranded DNAs (dsDNA90 and HSV120) in mouse embryonic fibroblasts (MEFs). Notably, ZIKV NS5, the viral RNA-dependent RNA polymerase, was responsible for the repression of IFN-ß. NS5 interacts with STING in the cytoplasm, suppresses IRF3 phosphorylation and nucleus localization and promotes the cleavage of STING K48-linked polyubiquitination. Furthermore, the NS5 methyltransferase (MTase) domain interacts with STING to restrict STING-induced IFN-ß expression. Interestingly, point mutation analyses of conserved methyltransferase active site residue D146 indicate that it is critical for repressing IFN-ß expression induced by STING stimulation in cGAS-STING signalling.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Mice , Catalytic Domain , DNA , Fibroblasts/metabolism , Immunity, Innate , Interferons , Methyltransferases/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Zika Virus/physiology
17.
Pathol Res Pract ; 255: 155168, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367599

ABSTRACT

OBJECTIVE: To explore the biological function of RELA proto-oncogene, NF-kB subunit (RELA) in hepatocellular carcinoma (HCC) progression, and its potential regulatory effects on the regulators of m6A modification. METHODS AND MATERIALS: GEPIA, UALCAN and Human Protein Atlas databases were applied to analyze the expression characteristics of RELA in HCC tissues and non-cancer liver tissues, and its relationship with clinicopathologic indicators and prognosis. Quantitative real-time PCR (qRT-PCR) was used to examine the expression level of RELA mRNA in HCC cells. Cell counting kit-8 (CCK-8) assay, EdU assay and flow cytometry were used to examine cell growth and apoptosis. PROMO database was applied to predict the binding sequence between RELA and methyltransferase like protein 3 (METTL3) promoter region, and this prediction was verified by dual luciferase reporter gene experiment and chromatin immunoprecipitation assay. The effect of RELA on METTL3 expression was examined by Western blot and qRT-PCT, and the regulatory effects of RELA on the other m6A regulators were evaluated by qRT-PCR. RESULTS: RELA was highly expressed in HCC tissues and cell lines, and was closely associated with adverse clinicopathologic indicators and poor prognosis of patients. Overexpression of RELA promoted the growth of HCC cells and inhibited apoptosis; Knocking down RELA had the opposite effects. Overexpression of RELA promoted METTL3 transcription. Knockdown or overexpression of METTL3 reversed the effects of overexpression or knockdown of RELA on HCC cell growth and apoptosis, respectively. RELA also promoted the expression of a series of m6A regulators at mRNA expression level in HCC cell lines. CONCLUSION: RELA promotes the transcription of METTL3 by binding to METTL3 promoter region, thus promoting the malignancy of HCC cells. This study suggests NF-κB signaling contributes the dysregulation of m6A modification in HCC tumorigenesis.


Subject(s)
Adenine , Carcinoma, Hepatocellular , Liver Neoplasms , Transcription Factor RelA , Humans , Adenine/analogs & derivatives , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Liver Neoplasms/genetics , Methyltransferases/genetics , RNA, Messenger , Transcription Factor RelA/genetics
18.
J Agric Food Chem ; 72(7): 3415-3426, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38325817

ABSTRACT

The plant growth-promoting effects of biostimulants have been widely documented, while little is known about the intrinsic mechanism. In our study, a pot experiment was conducted to investigate the effects of biostimulants on maize, and the maize root transcriptome and rhizosphere microbiome were assessed. The physicochemical properties of the soil were significantly altered with various trends, and the growth and yield of maize were promoted by biostimulants. Sampling time and maize strain were the strongest factors that altered the rhizosphere microorganisms. Rhizosphere microbiota with biostimulant application exhibited high community robustness. Root transcriptome analysis suggested an altered expression profile induced by biostimulants and maize strains. An integrated correlation analysis demonstrated that phosphate and nitrate metabolism genes are tightly associated with some rhizosphere microbiota. These results implied the plant growth-promoting effects of biostimulants might act in a rhizosphere microorganism-dependent manner and help to expand the use of biostimulants in sustainable agriculture.


Subject(s)
Microbiota , Transcriptome , Zea mays/metabolism , Rhizosphere , Agriculture/methods , Soil/chemistry , Soil Microbiology , Plant Roots
19.
Nat Food ; 5(1): 83-92, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38168783

ABSTRACT

Scaling up urban agriculture could leverage transformative change, to build and maintain resilient and sustainable urban systems. Current understanding of drivers, processes and pathways for scaling up urban agriculture, however, remains fragmentary and largely siloed in disparate disciplines and sectors. Here we draw on multiple disciplinary domains to present an integrated conceptual framework of urban agriculture and synthesize literature to reveal its social-ecological effects across scales. We demonstrate plausible multi-phase developmental pathways, including dynamics, accelerators and feedback associated with scaling up urban agriculture. Finally, we discuss key considerations for scaling up urban agriculture, including diversity, heterogeneity, connectivity, spatial synergies and trade-offs, nonlinearity, scale and polycentricity. Our framework provides a transdisciplinary roadmap for policy, planning and collaborative engagement to scale up urban agriculture and catalyse transformative change towards more robust urban resilience and sustainability.


Subject(s)
Resilience, Psychological , Agriculture , Social Environment , Policy
20.
Toxicol Sci ; 198(1): 50-60, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38180883

ABSTRACT

Acetaminophen (APAP)-induced liver injury is one of the most frequent causes of acute liver failure worldwide. Significant increases in the levels of miRNA-21 in both liver tissues and plasma have been observed in APAP-overdosed animals and humans. However, the mechanistic effect of miRNA-21 on acute liver injury remains unknown. In this study, we generated a new hepatocyte-specific miRNA-21 knockout (miR-21-HKO) mouse line. miR-21-HKO and the background-matched sibling wild-type (WT) mice were treated with a toxic dose of APAP. Compared with WT mice, miR-21 HKO mice showed an increased survival, a reduction of necrotic hepatocytes, and an increased expression of light chain 3 beta, which suggested an autophagy activation. The expression of PPARγ was highly induced in the livers of miR-21-HKO mice after a 2-h APAP treatment, which preceded the activation of LC3B at the 12 h APAP treatment. miR-21 negatively regulated PPARγ protein expression by targeting its 3'-UTR. When PPARγ function was blocked by a potent antagonist GW9662 in miR-21-HKO mice, the autophage activation was significantly diminished, suggesting an indispensable role of PPARγ signaling pathway in miR-21-mediated hepatotoxicity. Taken together, hepatocyte-specific depletion of miRNA-21 alleviated APAP-induced hepatotoxicity by activating PPARγ and autophagy, demonstrating a crucial new regulatory role of miR-21 in APAP-mediated liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , MicroRNAs , Animals , Humans , Mice , Acetaminophen/metabolism , Autophagy , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes , Liver , Mice, Inbred C57BL , MicroRNAs/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...