Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Asian J Pharm Sci ; 19(3): 100910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948397

ABSTRACT

The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.

2.
Biomol Biomed ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38662949

ABSTRACT

A cataract is a clinically common blinding disease closely related to the ageing of the eye cells, which has become a major health killer in the elderly. Our research seeks to analyze the primary targets linked to the pathogenesis of cataracts during the ageing process. We performed bioinformatics analyses on the GSE101727 dataset to discover genes linked with ageing and cataracts. To explore the impacts of Nucleophosmin 1 (NPM1) on cell apoptosis, proliferation, as well as epithelial-mesenchymal transition (EMT) processes, in vitro tests such as western blotting, flow cytometry, and MTT were carried out. Additionally, the study incorporated transforming growth factor ß2 (TGF-ß2) to examine its function in cellular responses, chloroquine (CQ) to regulate autophagic flow, and H2O2 therapy to mimic oxidative stress. Our study discovered seven ageing-related genes, including NPM1, that had substantial relationships with cataracts. NPM1 overexpression was shown to boost cell proliferation and prevent apoptosis in SRA01/04 cells. Notably, NPM1 modulated the TGF-ß signalling pathway, influencing cell proliferation and EMT processes. miR-429 was shown to be adversely regulating NPM1 and autophagy-related proteins, as demonstrated by changes in their expression in response to TGF-ß2 treatment. Furthermore, NPM1 knockdown restored autophagy activity suppressed by miR-429 mimics, indicating a complex interaction of miR-429, NPM1, and TGF-ß2 pathways in regulating autophagy and EMT. Lens epithelial cell proliferation and apoptosis were largely regulated by NPM1, as well as autophagy and EMT, which were significantly mediated by TGF-ß2 and the miR-429/NPM1 axis. These results imply new possible targets for prognosis and therapy of cataracts.

3.
Water Res ; 257: 121656, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677110

ABSTRACT

Schwertmannite (Sch) is considered as an effective remover of Chromium (Cr) due to its strong affinity for toxic Cr species. Since the instability of Sch, the environmental fate of Cr deserves attention during the transformation of Sch into a more stable crystalline phase. The ubiquitous manganese(II) (Mn(II)) probably affects the transformation of Sch and thus the environmental fate of Cr. Therefore, this study investigated the impact of Mn(II) on the transformation of Cr-absorbed Sch (Cr-Sch) and the associated behavior of SO42- and Cr. We revealed that the transformation products of Cr-Sch at pH 3.0 and 7.0 were goethite and Sch, respectively. The presence of Mn(II) weakened the crystallinity of the transformation products, and the trend was positively correlated with the concentration of Mn(II). However, Mn(II) changed the transformation products of Cr-Sch from hematite to goethite at pH 10.0. Mn(II) replaced Fe(III) in the mineral structures or formed Mn-O complexes with surface hydroxyl groups (-OH), thereby affecting the transformation pathways of Sch. The presence of Mn(II) enhanced the immobilization of Cr on minerals at pH 3.0 and 7.0. Sch is likely to provide an channel for electron transfer between Mn(II) and Cr(VI), which promotes the reduction of Cr(VI). Meanwhile, Mn(Ⅱ) induced more -OH production on the surface of secondary minerals, which played an important role in increasing the Cr fixation. In addition, part of the Mn(Ⅱ) was oxidized to Mn(Ⅲ)/Mn(Ⅳ) at pH 3.0 and pH 7.0. This study helps to predict the role of Mn(II) in the transformations of Cr-Sch in environments and design remediation strategies for Cr contamination.


Subject(s)
Chromium , Iron Compounds , Manganese , Minerals , Chromium/chemistry , Manganese/chemistry , Minerals/chemistry , Iron Compounds/chemistry , Phase Transition , Hydrogen-Ion Concentration , Ferric Compounds/chemistry
4.
J Environ Manage ; 355: 120506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447514

ABSTRACT

Plenty of heavy metals (HMs) that are adsorbed on clay minerals (such as kaolinite), in addition to low molecular-weight organic acids (such as oxalic acid (OA)) with high activities, are widespread in the natural environment. In the present study, the effects of OA on the environmental behaviors of Pb2+/Cd2+ adsorbed by kaolinite have been investigated. The effectiveness and mechanisms of calcium silicate (CS) and magnesium silicate (MS) in reducing the environmental risks of the HMs have also been studied. The results showed that the releases of Pb2+/Cd2+ increased with an increasing concentration of OA. When different dosages of CS/MS were added to the aging system, a redistribution of HMs took place and the free form of Pb2+/Cd2+ decreased to very low levels. Also, the unextractable Pb2+/Cd2+ increased to high levels. Furthermore, a series of characterizations showed that the released HMs were re-captured by the CS/MS. In addition, the CS immobilized the OA in the solution during the aging process, which also facilitated an immobilization of the carbon element in the environment. In general, the present study has contributed to a further understanding of the transport behaviors of the HMs in natural environments, and of the interactions between CS (or MS), the environmental media, and the heavy metal contaminants. In addition, this study has also provided an eco-friendly strategy for an effective remediation of heavy metal pollution.


Subject(s)
Metals, Heavy , Soil Pollutants , Kaolin , Cadmium , Lead , Metals, Heavy/analysis , Environmental Pollution , Soil Pollutants/analysis , Soil
5.
Angew Chem Int Ed Engl ; 63(21): e202319780, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38523406

ABSTRACT

Tumor-associated macrophages (TAMs) play a role in both pro- and anti-tumor functions; and the targeted polarization from M2 to M1 TAMs has become an effective therapy option. Although detection of M1 TAMs is imperative to assess cancer immunotherapeutic efficacy, existing optical probes suffer from shallow tissue penetration depth and poor specificity toward M1 TAMs. Herein, we report a tandem-locked NIR chemiluminescent (CL) probe for specific detection of M1 TAMs. Through a combined molecular engineering approach via both atomic alternation and introduction of electron-withdrawing groups, near-infrared (NIR) chemiluminophores are screened out to possess record-long emission (over 800 nm), record-high CL quantum yield (2.7 % einstein/mol), and prolonged half-life (7.7 h). Based on an ideal chemiluminophore, the tandem-locked probe (DPDGN) is developed to only activate CL signal in the presence of both tumour (γ-glutamyl transpeptidase) and M1 macrophage biomarkers (nitric oxide). Such a tandem-lock design ensures its high specificity towards M1 macrophages in the tumor microenvironment over those in normal tissues or peripheral blood. Thus, DPDGN permits noninvasive imaging and tracking of M1 TAM in the tumor of living mice during R837 treatment, showing a good correlation with ex vivo methods. This study not only reports a new molecular approach towards highly efficient chemiluminophores but also reveals the first tandem-locked CL probes for enhanced imaging specificity.


Subject(s)
Tumor-Associated Macrophages , Animals , Mice , Optical Imaging , Humans , Luminescent Agents/chemistry , Luminescent Measurements
6.
Adv Mater ; 36(25): e2400762, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445783

ABSTRACT

Combination cancer immunotherapy based on electromagnetic energy and immunotherapy shows potent anti-cancer efficacy. However, as a factor that mediates tumor metastasis and immune suppression, the impact of tumor exosomes on therapy under electromagnetic energy stimulation remains unclear. Herein, findings indicate that sonodynamic therapy (SDT) increases serum exosome levels by inducing apoptotic exosomes and loosening the tumor extracellular matrix, promoting lung metastasis. To address this problem, an exosome-inhibiting polymeric sonosensitizer (EIPS) selectively inhibiting tumor exosome generation in response to the tumor biomarker is synthesized. EIPS consists of a semiconducting polymer backbone capable of inducing SDT and a poly(ethylene glycol) layer conjugated with a tumor-specific enzyme-responsive exosome inhibitor prodrug. After being cleaved by tumor Cathepsin B, EIPS releases active exosome inhibitors, preventing tumor exosome-mediated immune suppression and lung metastasis. As a result, EIPS elicits robust antitumor effects through the synergistic effect of SDT and tumor exosome inhibition, completely preventing lung metastasis and establishing a long-term immune memory effect. This is the first example showing that combining SDT with tumor-specific exosome inhibition can elicit a potent immune response without the help of typical immune agonists.


Subject(s)
Exosomes , Immunotherapy , Lung Neoplasms , Exosomes/metabolism , Exosomes/chemistry , Animals , Mice , Cell Line, Tumor , Humans , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Ultrasonic Therapy/methods , Polymers/chemistry , Polyethylene Glycols/chemistry , Neoplasms/therapy
7.
Matrix Biol ; 129: 1-14, 2024 May.
Article in English | MEDLINE | ID: mdl-38490466

ABSTRACT

The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.


Subject(s)
Cell Differentiation , Cell Movement , Dental Papilla , Hyaluronic Acid , Hyaluronoglucosaminidase , Odontoblasts , Animals , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/genetics , Mice , Hyaluronic Acid/metabolism , Odontoblasts/metabolism , Odontoblasts/cytology , Dental Papilla/cytology , Dental Papilla/metabolism , Signal Transduction , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cells, Cultured , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics
8.
Adv Mater ; 36(27): e2314309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520284

ABSTRACT

Triple negative breast cancer (TNBCs), known as an immunologically cold tumor, is difficult to completely eliminate with existing monotherapies, let alone metastasis and recurrence. It is urgent to design a rational combination of multiple therapies to programmatically reconstitute tumor microenvironment (TME) and reverse the immune "cold" into "hot" inflammatory tumors to improve the therapeutic effect. Hence, in this work, a multifunctional nanosystem (FeSH NPs) that integrates metal-polyphenol coordination complex as a photothermal agent and polyphenol, salvianolic acid B (SAB) as immunomodulator is designed and fabricated for synergistic photothermal-immunotherapy of TNBCs combined with anti-PD-L1 antibody. Guided by photothermal/photoacoustic dual-mode imaging, photothermal therapy (PTT) caused by FeSH NPs induces immunogenic cell death (ICD) under 808 nm laser irradiation. Subsequently, the loaded SAB is released with the addition of deferoxamine mesylate (DFO) to remodel TME, specifically TGF-ß inhibition and PD-L1 upregulation, and eliminate the primary tumors. The combination of PTT and TME reprogramming by FeSH NPs further synergizes with anti-PD-L1 antibody to eradicate recurrence and inhibit metastasis of TNBCs concurrently. Given the biosafety of FeSH NPs throughout the lifecycle, this work provides a protocol with high clinical translational promise for comprehensive programmed therapeutics of immunologically cold tumors TNBCs.


Subject(s)
B7-H1 Antigen , Immunotherapy , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Animals , Mice , Tumor Microenvironment/drug effects , Humans , Cell Line, Tumor , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Female , Photothermal Therapy/methods , Polyphenols/chemistry , Polyphenols/pharmacology , Multifunctional Nanoparticles/chemistry , Transforming Growth Factor beta/metabolism , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use
9.
Vaccine ; 42(10): 2707-2715, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38503663

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is primarily responsible for causing septicemia, pneumonitis, peritonitis, swollen head syndrome, and salpingitis in poultry, leading to significant losses in the poultry sector, particularly within the broiler industry. The removal of the lpxL and lpxM genes led to an eightfold decrease in the endotoxin levels of wild APEC strains. In this study, mutant strains of lpxL/lpxM and their O1, O2, and O78 wild-type strains were developed for an inactivated vaccine (referred to as the mutant vaccine and the wild-type vaccine, respectively), and the safety and effectiveness of these two prototype vaccines were assessed in white Leghorn chickens. Findings indicated that chickens immunized with the mutant vaccine showed a return of appetite sooner post-immunization and experienced earlier disappearance of nodules at the injection site compared to those immunized with the wild-type vaccine. Pathological examinations revealed that lesions were still present in the liver, lung, and injection site in chickens vaccinated with the wild-type vaccine 14 days post-vaccination (dpv), whereas no lesions were found in chickens vaccinated with the mutant vaccine at 14 dpv. There were no significant differences in antibody levels on the challenge day or in mortality or lesion scores between challenged birds immunized with either the mutant vaccine or the wild-type vaccine at the same dose. In this study, the safety of a single dose or overdose of the mutant vaccine and its efficacy at one dose were evaluated in broilers, and the results showed that the mutant vaccine had no adverse effects on or protected vaccinated broilers from challenge with the APEC O1, O2, or O78 strains. These results demonstrated that the mutant polyvalent inactivated vaccine is a competitive candidate against APEC O1, O2, and O78 infection compared to the wild-type vaccine.


Subject(s)
Escherichia coli Infections , Escherichia coli Vaccines , Poultry Diseases , Animals , Escherichia coli/genetics , Chickens , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Vaccines, Inactivated/adverse effects
10.
ACS Nano ; 18(9): 7123-7135, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38390866

ABSTRACT

Inflammatory bowel disease (IBD) is strongly related to the occurrence of accumulation of toxic reactive oxygen species (ROS), inflammation of the mucosa, and an imbalance of intestinal microbes. However, current treatments largely focus on a single factor, yielding unsatisfactory clinical outcomes. Herein, we report a biocompatible and IBD-targeted metabolic nanoregulator (TMNR) that synergistically regulates cellular and bacterial metabolism. The TMNR comprises a melanin-gallium complex (MNR) encapsulated within a thermosensitive and colitis-targeting hydrogel, all composed of natural and FDA-approved components. The TMNR confers superior broad-spectrum antioxidant properties, effectively scavenging reactive oxygen species (ROS) and blocking inflammatory signaling pathways. The presence of Ga3+ in TMNR selectively disrupts iron metabolism in pathogenic microorganisms due to its structural resemblance to the iron atom. Additionally, incorporating a thermosensitive injectable hydrogel enables targeted delivery of TMNR to inflammatory regions, prolonging their retention time and providing a physical barrier function for optimizing IBD treatment efficacy. Collectively, TMNR effectively modulates the redox balance of inflamed colonic epithelial tissue and disrupts iron metabolism in pathogenic microorganisms, thereby eliminating inflammation and restoring intestinal homeostasis against IBD. Hence, this work presents a comprehensive approach for precise spatiotemporal regulation of the intestinal microenvironmental metabolism for IBD treatment.


Subject(s)
Inflammatory Bowel Diseases , Humans , Reactive Oxygen Species/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammation/metabolism , Hydrogels/pharmacology , Iron
11.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310105

ABSTRACT

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Subject(s)
Growth Differentiation Factor 15 , Obesity , Mice , Male , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Obesity/drug therapy , Obesity/metabolism , Primates , Macaca/metabolism
12.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398537

ABSTRACT

Proton exchange membrane water electrolysis is hindered by the sluggish kinetics of the anodic oxygen evolution reaction. RuO2 is regarded as a promising alternative to IrO2 for the anode catalyst of proton exchange membrane water electrolyzers due to its superior activity and relatively lower cost compared to IrO2. However, the dissolution of Ru induced by its overoxidation under acidic oxygen evolution reaction (OER) conditions greatly hinders its durability. Herein, we developed a strategy for stabilizing RuO2 in acidic OER by the incorporation of high-valence metals with suitable ionic electronegativity. A molten salt method was employed to synthesize a series of high-valence metal-substituted RuO2 with large specific surface areas. The experimental results revealed that a high content of surface Ru4+ species promoted the OER intrinsic activity of high-valence doped RuO2. It was found that there was a linear relationship between the ratio of surface Ru4+/Ru3+ species and the ionic electronegativity of the dopant metals. By regulating the ratio of surface Ru4+/Ru3+ species, incorporating Re, with the highest ionic electronegativity, endowed Re0.1Ru0.9O2 with exceptional OER activity, exhibiting a low overpotential of 199 mV to reach 10 mA cm-2. More importantly, Re0.1Ru0.9O2 demonstrated outstanding stability at both 10 mA cm-2 (over 300 h) and 100 mA cm-2 (over 25 h). The characterization of post-stability Re0.1Ru0.9O2 revealed that Re promoted electron transfer to Ru, serving as an electron reservoir to mitigate excessive oxidation of Ru sites during the OER process and thus enhancing OER stability. We conclude that Re, with the highest ionic electronegativity, attracted a mass of electrons from Ru in the pre-catalyst and replenished electrons to Ru under the operating potential. This work spotlights an effective strategy for stabilizing cost-effective Ru-based catalysts for acidic OER.

13.
J Vis Exp ; (204)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38407337

ABSTRACT

Mid-pancreatectomy combined with end-to-end anastomosis is a surgical procedure used to treat benign pancreatic tumors. It involves removing the tumor from the middle section of the pancreas and connecting the proximal and distal ends through an anastomosis. The traditional surgical approach for resecting the middle segment of the pancreas involves closing the proximal pancreas and creating a Roux-en-Y anastomosis with the jejunum. However, this approach carries a double risk of pancreatic stump fistula and pancreatico enteric anastomotic leak postoperatively. In this paper, a new procedure is described where stent tubes were placed into the proximal and distal sides of the pancreatic ducts after ensuring sufficient freedom from the proximal distal pancreas. The pancreatic parenchyma was then sutured continuously under direct vision to achieve pancreatic end-to-end anastomosis. This procedure helps preserve pancreatic function, reducing the risk of postoperative pancreatic insufficiency. However, due to the complexity and risks involved, thorough evaluation and preparation are necessary before surgery. We carefully assess the patient's history, serology, and imaging results to determine the feasibility and effectiveness of the procedure. During surgery, we consider the use of a suitable pancreatic duct stent to ensure the flow of pancreatic juice into the intestine through physiological pathways. Our goal is to remove the tumor while preserving as much normal pancreatic tissue as possible for the anastomosis. After the operation, it is crucial to monitor the patient's pancreatic function, paying close attention to blood glucose levels, drainage fluid volume, and amylase value of the pancreatic anastomosis. During the postoperative follow-up visit, the patient's pancreatic function was assessed, and there was no significant change in quality of life compared to before the surgery. This indicates that mid-pancreatectomy combined with end-to-end anastomosis is a safe and effective procedure for treating pancreatic benign neoplasms.


Subject(s)
Pancreatectomy , Pancreatic Neoplasms , Humans , Quality of Life , Pancreas/surgery , Pancreatic Neoplasms/surgery , Anastomosis, Surgical
14.
ACS Nano ; 18(6): 4957-4971, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38288709

ABSTRACT

Vaccine technology is effective in preventing and treating diseases, including cancers and viruses. The efficiency of vaccines can be improved by increasing the dosage and frequency of injections, but it would bring an extra burden to people. Therefore, it is necessary to develop vaccine-boosting techniques with negligible side effects. Herein, we reported a cupping-inspired noninvasive suction therapy that could enhance the efficacy of cancer/SARS-CoV-2 nanovaccines. Negative pressure caused mechanical immunogenic cell death and released endogenous adjuvants. This created a subcutaneous niche that would recruit and activate antigen-presenting cells. Based on this universal central mechanism, suction therapy was successfully applied in a variety of nanovaccine models, which include prophylactic/therapeutic tumor nanovaccine, photothermal therapy induced in situ tumor nanovaccine, and SARS-CoV-2 nanovaccine. As a well-established physical therapy method, suction therapy may usher in an era of noninvasive and high-safety auxiliary strategies when combined with vaccines.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Vaccines , Humans , Nanovaccines , Suction , Neoplasms/therapy , Physical Therapy Modalities , Immunotherapy
15.
Adv Mater ; 36(1): e2308924, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37864513

ABSTRACT

Cancer immunotherapy has become a promising method for cancer treatment, bringing hope to advanced cancer patients. However, immune-related adverse events caused by immunotherapy also bring heavy burden to patients. Semiconducting polymer nanoparticles (SPNs) as an emerging nanomaterial with high biocompatibility, can eliminate tumors and induce tumor immunogenic cell death through different therapeutic modalities, including photothermal therapy, photodynamic therapy, and sonodynamic therapy. In addition, SPNs can work as a functional nanocarrier to synergize with a variety of immunomodulators to amplify anti-tumor immune responses. In this review, SPNs-based combination cancer immunotherapy is comprehensively summarized according to the SPNs' therapeutic modalities and the type of loaded immunomodulators. The in-depth understanding of existing SPNs-based therapeutic modalities will hopefully inspire the design of more novel nanomaterials with potent anti-tumor immune effects, and ultimately promote their clinical translation.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Polymers/therapeutic use , Semiconductors , Photoacoustic Techniques/methods , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Immunotherapy , Adjuvants, Immunologic/therapeutic use , Cell Line, Tumor
16.
Small ; 20(22): e2308419, 2024 May.
Article in English | MEDLINE | ID: mdl-38102103

ABSTRACT

The unsatisfactory oxygen evolution reaction (OER) activity of IrO2 has intensively raised the cost and energy consumption of hydrogen generation from proton exchange membrane water electrolyzers. Here, the acidic OER activity of the rutile IrO2 is significantly enhanced by the incorporation of trivalent metals (e.g., Gd, Nd, and Pr) to increase the Ir-O covalency, while the high-valence (pentavalent or higher) metal incorporation decreases the Ir-O covalency resulting in worse OER activity. Experimental and theoretical analyses indicate that enhanced Ir-O covalency activates lattice oxygen and triggers lattice oxygen-mediated mechanism to enhance OER kinetics, which is verified by the finding of a linear relationship between the natural logarithm of intrinsic activity and Ir-O covalency described by charge transfer energy. By regulating the Ir-O covalency, the obtained Gd-IrO2-δ merely needs 260 mV of overpotential to reach 10 mA cm-2 and shows impressive stability during a 200-h test in 0.5 м H2SO4. This work provides an effective strategy for significantly enhancing the OER activity of the widely used IrO2 electrocatalysts through the rational regulation of Ir-O covalency.

17.
Cancer Med ; 12(24): 21905-21919, 2023 12.
Article in English | MEDLINE | ID: mdl-38050871

ABSTRACT

BACKGROUND: Anti-PD1/PD-L1 antibody plus human epidermal growth factor receptor 2 (HER2) antibody and chemotherapy have become the new first-line therapy for HER2 overexpression-positive advanced gastric cancers (GC), suggesting that HER2 and PD-L1 play a vital role in guiding systemic treatment for patients with GC. This study aimed to depict the genomic and immune landscapes of Chinese patients with GC and investigate their correlations with HER2 amplification and PD-L1 expression. PATIENTS AND METHODS: Next-generation targeted sequencing and PD-L1 immunohistochemistry were performed on tumor samples from 735 patients with pathologically diagnosed GC. The genomic and immune landscapes and their correlations with HER2 amplification and PD-L1 expression were analyzed. RESULTS: The most commonly mutated genes in Chinese GC were TP53 (64%), CDH1 (20%), ARID1A (18%), HMCN1 (15%), KMT2D (11%), and PIK3CA (11%). Seventy-six (10%) patients were HER2 amplification, and 291 (40%) had positive PD-L1 expression. Classifying the total population based on HER2 amplification and PD-L1 expression level, 735 patients were divided into four subgroups: HER2+/PD-L1+ (4.5%), HER2+/PD-L1- (5.9%), HER2-/PD-L1+ (35.1%), and HER2-/PD-L1- (54.5%). The HER2+/PD-L1- and HER2+/PD-L1+ subgroups exhibited dramatically higher rate of TP53 mutations, CCNE1 and VEGF amplifications. The HER2+/PD-L1- subgroup also had a markedly higher rate of MYC amplification and KRAS mutations. The HER2-/PD-L1+ subgroup had significantly higher rate of PIK3CA mutations. HER2+/PD-L1- subgroup had the highest TMB level and HER2-/PD-L1+ subgroup had the highest proportion of patients with microsatellite instability-high than other subgroups. Furthermore, we observed that different HER2 amplification levels had distinct impacts on the correlations between PD-L1 expression and therapeutic genomic alterations, but no impact on the prognosis. CONCLUSION: The combination of HER2 amplification and PD-L1 expression in Chinese patients with GC could stratify the total populations into several subgroups with distinctive genomic and immune landscapes, which should be considered when making personalized treatment decisions.


Subject(s)
Stomach Neoplasms , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Genomics , Mutation , Prognosis , Stomach Neoplasms/pathology
18.
Heliyon ; 9(10): e21073, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37916108

ABSTRACT

Objective: Basic medical studies have reported an improved effect of osteocalcin on cognition. We explored the causal link between osteocalcin and dementia via the implementation of Mendelian randomization methodology. Methods: Genome-wide association studies were employed to identify single nucleotide polymorphisms (SNPs) showing significant correlations with osteocalcin. Subsequently, A two-sample Mendelian randomization analysis was conducted utilizing the inverse-variance-weighted (IVW) technique to assess the causal relationship between osteocalcin and various types of dementia, including Alzheimer's disease (AD), Parkinson's disease (PD), Lewy body dementia (LBD), and vascular dementia (VD). This approach aimed to minimize potential sources of confounding bias and provide more robust results. Multivariable MR (MVMR) analysis was conducted to adjust for potential genetic pleiotropy. Results: The study employed three SNPs, namely rs71631868, rs9271374, and rs116843408, as genetic tools to evaluate the causal association of osteocalcin with dementia. The IVW analysis indicated that osteocalcin may have a potential protective effect against AD with an odds ratio (OR) of 0.790 (95 % CI: 0.688-0.906; P < 0.001). However, no significant relationship was observed between osteocalcin and other types of dementia. Furthermore, the MVMR analysis indicated that the impact of osteocalcin on AD remained consistent even after adjusting for age-related macular degeneration and Type 2 diabetes with an OR of 0.856 (95 % CI: 0.744-0.985; P = 0.030). Conclusions: Our findings provide important insights into the role of osteocalcin in the pathogenesis of AD. Future research is required to clarify the underlying mechanisms and their clinical applications.

19.
Adv Sci (Weinh) ; 10(35): e2303113, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37877615

ABSTRACT

N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional machinery with extensive existence for RNA modification, plays versatile roles in various cellular processes and functions. However, the molecular mechanism by which ac4C modification mediates neuropathic pain remains elusive. Here, it is found that the enhanced ac4C modification promotes the recruitment of polysome in Vegfa mRNA and strengthens the translation efficiency following SNI. Nerve injury increases the expression of NAT10 and the interaction between NAT10 and Vegfa mRNA in the dorsal horn neurons, and the gain and loss of NAT10 function further confirm that NAT10 is involved in the ac4C modification in Vegfa mRNA and pain behavior. Moreover, the ac4C-mediated VEGFA upregulation contributes to the central sensitivity and neuropathic pain induced by SNI or AAV-hSyn-NAT10. Finally, SNI promotes the binding of HNRNPK in Vegfa mRNA and subsequently recruits the NAT10. The enhanced interaction between HNRNPK and NAT10 contributes to the ac4C modification of Vegfa mRNA and neuropathic pain. These findings suggest that the enhanced interaction between HNRNPK and Vegfa mRNA upregulates the ac4C level by recruiting NAT10 and contributes to the central sensitivity and neuropathic pain following SNI. Blocking this cascade may be a novel therapeutic approach in patients with neuropathic pain.


Subject(s)
Central Nervous System Sensitization , Neuralgia , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Neuralgia/genetics , Neuralgia/metabolism , Spinal Cord Dorsal Horn/metabolism , Up-Regulation/genetics
20.
Adv Mater ; 35(48): e2306739, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660291

ABSTRACT

Real-time in vivo imaging of RNA can enhance the understanding of physio-pathological processes. However, most nucleic acid-based sensors have poor resistance to nucleases and limited photophysical properties, making them suboptimal for this purpose. To address this, a semiconducting polymer nanospherical nucleic acid probe (SENSE) for transcriptomic imaging of cancer immunity in living mice is developed. SENSE comprises a semiconducting polymer (SP) backbone covalently linked with recognition DNA strands, which are complemented by dye-labeled signal DNA strands. Upon detection of targeted T lymphocyte transcript (Gzmb: granzyme B), the signal strands are released, leading to a fluorescence enhancement correlated to transcript levels with superb sensitivity. The always-on fluorescence of the SP core also serves as an internal reference for tracking SENSE uptake in tumors. Thus, SENSE has the dual-signal channel that enables ratiometric imaging of Gzmb transcripts in the tumor of living mice for evaluating chemo-immunotherapy; moreover, it has demonstrated sensitivity and specificity comparable to flow cytometry and quantitative polymerase chain reaction,  yet offering a faster and simpler means of T cell detection in resected tumors. Therefore, SENSE represents a promising tool for in vivo RNA imaging.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Polymers , Transcriptome , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Nucleic Acid Probes , RNA , Optical Imaging/methods , DNA , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...