Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Sci Total Environ ; 933: 173012, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38719038

ABSTRACT

Microplastics and nanoplastics (MNPs) have received increasing attention due to their high detection rates in human matrices and adverse health implications. However, the toxicity of MNPs on embryo/fetal development following maternal exposure remains largely unexplored. Zebrafish, sharing genetic similarities with human, boast a shorter life cycle, rapid embryonic development, and the availability of many transgenic strains, is a suitable model for environmental toxicology studies. This review comprehensively explores the existing research on the impacts of MNPs on zebrafish embryo development. MNPs exposure induces a wide array of toxic effects, encompassing neurodevelopmental toxicity, immunotoxicity, gastrointestinal effects, microbiota dysbiosis, cardiac dysfunctions, vascular toxicity, and metabolic imbalances. Moreover, MNPs disrupt the balance between reactive oxygen species (ROS) production and antioxidant capacity, culminating in oxidative damage and apoptosis. This study also offers insight into the current omics- and multi-omics based approaches in MNPs research, which greatly expedite the discovery of biochemical or metabolic pathways, and molecular mechanisms underlying MNPs exposure. Additionally, this review proposes a preliminary adverse outcome pathway framework to predict developmental toxicity caused by MNPs. It provides a comprehensive overview of pathways, facilitating a clearer understanding of the exposure and toxicity of MNPs, from molecular effects to adverse outcomes. The compiled data in this review provide a better understanding for MNPs effects on early life development, with the goal of increasing awareness about the risks posed to pregnant women by MNPs exposure and its potential impact on the health of their future generations.


Subject(s)
Embryo, Nonmammalian , Embryonic Development , Microplastics , Water Pollutants, Chemical , Zebrafish , Animals , Microplastics/toxicity , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Embryonic Development/drug effects , Nanoparticles/toxicity
2.
Environ Pollut ; 347: 123731, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458519

ABSTRACT

Bisphenol A (BPA), an ingredient in consumer products, has been suggested that it can interfere with bone development and maintenance, whereas the molecule mechanism remains unclear. The objective of this study is to investigate the effect of BPA on early bone differentiation and metabolism, and its potential molecule mechanism by employing hFOB1.19 cell as an in vitro model, as well as larval zebrafish as an in vivo model. The in vitro experiments indicated that BPA decreased cell viability, inhibited osteogenic activity (such as ALP, RUNX2), increased ROS production, upregulated transcriptional or protein levels of apoptosis-related molecules (such as Caspase 3, Caspase 9), while suppressed transcriptional or protein levels of pyroptosis-specific markers (TNF-α, TNF-ß, IL-1ß, ASC, Caspase 1, and GSDMD). Moreover, the evidences from in vivo model demonstrated that exposure to BPA distinctly disrupted pharyngeal cartilage, craniofacial bone development, and retarded bone mineralization. The transcriptional level of bone development-related genes (bmp2, dlx2a, runx2, and sp7), apoptosis-related genes (bcl2), and pyroptosis-related genes (cas1, nlrp3) were significantly altered after treating with BPA in zebrafish larvae. In summary, our study, combining in vitro and in vivo models, confirmed that BPA has detrimental effects on osteoblast activity and bone development. These effects may be due to the promotion of apoptosis, the initiation of oxidative stress, and the inhibition of pyroptosis.


Subject(s)
Benzhydryl Compounds , Core Binding Factor Alpha 1 Subunit , Phenols , Zebrafish , Animals , Zebrafish/metabolism , Osteoblasts/metabolism , Oxidative Stress
3.
Ecotoxicol Environ Saf ; 271: 115960, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219622

ABSTRACT

Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.


Subject(s)
Ferroptosis , Flame Retardants , Organophosphates , Female , Animals , NF-E2-Related Factor 2/genetics , Zebrafish , Acetylcholinesterase , Flame Retardants/toxicity , Kelch-Like ECH-Associated Protein 1/genetics , Reactive Oxygen Species , Organophosphorus Compounds/toxicity , Oxidative Stress , Xanthophylls
4.
J Hazard Mater ; 465: 133332, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38147758

ABSTRACT

Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.


Subject(s)
Flame Retardants , Zebrafish , Animals , Male , Zebrafish/metabolism , Organophosphorus Compounds/metabolism , Larva/metabolism , Flame Retardants/metabolism , Organophosphates/toxicity , Neurotransmitter Agents/metabolism
5.
Heliyon ; 9(11): e22100, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027564

ABSTRACT

Background: Developmental dyslexia (DD) has been generally recognized as a multifactorial psychological disorder in recent decades. However, studies on reading and learning environment, social and demographic factors affecting Chinese developmental dyslexia (DD) are still scarce in China. This study aims to explore multidimensional home influencing factors associated with DD before and after birth. Methods: A total of 60 dyslexic and 252 normal elementary school students graded 2-5 were recruited in Shantou, China. The Least Absolute Shrinkage and Selection Operator (LASSO) regression model was used for the social and demographic variables screening. Odds ratios (ORs) with 95 % confidence intervals (CIs) for associations between DD and related factors were estimated by multivariate logistic regression models. Results: Through LASSO regression, we ultimately identified 13 key variables, including maternal education level and family monthly income, among others. The logistic regression analyses showed that the risk of DD was higher in children with lower maternal education levels. Divergent parenting styles may be a risk factor for developing DD as opposed to consistent parenting styles (OR = 4.93, 95%CI: 1.11-21.91). Children whose mothers suffered from malnutrition during pregnancy were more likely to develop DD (OR = 10.31, 95%CI: 1.84-37.86), as well as exposure to second-hand smoking at home every day (OR = 5.33, 95%CI: 1.52-18.66). Interestingly, children's active reading (OR = 0.26, 95%CI: 0.08-0.84; OR = 0.17, 95%CI: 0.04-0.76 for "sometimes" and "often" compared to none, respectively), children having extracurricular reading fairy tale books (OR = 0.37, 95%CI: 0.15-0.90), and children having extracurricular reading composition books (OR = 0.25, 95%CI: 0.09-0.69) were significant protective factors for DD. Conclusions: Home reading environment, several educational, sociometric and demographic factors may influence the development of dyslexia. We should pay attention to these factors on the development of dyslexia, so as to provide the well social and familial environment to ensure the healthy development of children.

6.
Chemosphere ; 344: 140401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839753

ABSTRACT

Exposure to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to have an impact on reproductive output and endocrine function in female zebrafish (Danio rerio). However, the transgenerational effects of BDE-47 have not been fully explored in previous reports. In this study, female zebrafish were exposed to BDE-47 for three consecutive weeks. The oogenesis, sex hormones, reproductive histology, and transcriptional profiles of genes along the hypothalamus-pituitary-gonad (HPG) axis were assessed in the exposed-F0 generation. After mating with unexposed males, the transgenerational effects of BDE-47 were evaluated on the basis of histopathology, morphometry and toxicogenome of the unexposed F1 generations at the larval stage. Results indicated that exposure to BDE-47 impaired reproductive capacity, disrupted endocrine system in F0 zebrafish, and compromised craniofacial skeletons and vertebrae development in F1 generations. In addition, through the use of toxicogenomics approach, immune-responsive pathways were found to be significantly enriched, and the transcript expression profiling of immune-related DEGs (IRDs) were dramatically inhibited in F1 generations following maternal BDE-47 exposure, indicating its immunotoxicity to offspring larvae. These findings advance our understanding of the transgenerational toxicity of BDE-47 and advocate for a more comprehensive assessment of other PBDE congeners through histomorphometry and toxicogenomic approaches.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Male , Animals , Female , Zebrafish/metabolism , Toxicogenetics , Reproduction , Halogenated Diphenyl Ethers/analysis , Larva/genetics , Water Pollutants, Chemical/analysis
7.
Ecotoxicol Environ Saf ; 267: 115615, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37890256

ABSTRACT

Polybrominated diphenyl ether flame retardants are known to have adverse effects on the development of organisms. We investigated the molecular mechanisms associated with the developmental hazards of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish, as well as the behavioral and morphological alterations involved, focusing on endoplasmic reticulum stress (ERS), oxidative stress, and apoptosis. Our study revealed behavioral alterations in zebrafish exposed to BDE-47, including impaired motor activity, reduced exploration, and abnormal swimming patterns. In addition, we observed malformations in craniofacial regions and other developmental abnormalities that may be associated with ERS-induced cellular dysfunction. BDE-47 exposure showed apparent changes in ERS, oxidative stress, and apoptosis biomarkers at different developmental stages in zebrafish through gene expression analysis and enzyme activity assays. The study indicated that exposure to BDE-47 results in ERS, as supported by the upregulation of ERS-related genes and increased activity of ERS markers. In addition, oxidative stress-related genes showed different expression patterns, suggesting that oxidative stress is involved in the BDE-47 toxic effects. Moreover, an assessment of apoptotic biomarkers revealed an imbalance in the expression levels of pro- and anti-apoptotic genes, suggesting that BDE-47 exposure activated the apoptotic pathway. These results highlight the complex interactions between ERS, oxidative stress, apoptosis, behavioral alterations, and morphological malformations following BDE-47 exposure in zebrafish. Understanding the mechanisms of toxicity of developmental hazards is essential to elucidate the toxicological effects of environmental contaminants. The knowledge can help develop strategies to mitigate their adverse effects on the health of ecosystems and humans.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Ether , Humans , Animals , Zebrafish , Ecosystem , Ethyl Ethers , Halogenated Diphenyl Ethers/toxicity , Endoplasmic Reticulum Stress , Biomarkers
8.
Environ Sci Pollut Res Int ; 30(29): 73018-73030, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37195602

ABSTRACT

Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals. However, due to inaccessibility and ethical issues, the use of humans and other placental mammals is constrained, which limits our better understanding of environmental factors on ocular development and visual function in the embryonic stage. Therefore, as complementing laboratory rodents, zebrafish has been the most frequently employed to understand the effects of environmental chemicals on eye development and visual function. One of the major reasons for the increasing use of zebrafish is their polychromatic vision. Zebrafish retinas are morphologically and functionally analogous to those of mammalian, as well as evolutionary conservation among vertebrate eye. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements (ions), metal-derived nanoparticles, microplastics, nanoplastics, persistent organic pollutants, pesticides, and pharmaceutical pollutants on the eye development and visual function in zebrafish embryos. The collected data provide a comprehensive understanding of environmental factors on ocular development and visual function. This report highlights that zebrafish is promising as a model to identify hazardous toxicants toward eye development and is hopeful for developing preventative or postnatal therapies for human congenital visual impairment.


Subject(s)
Plastics , Zebrafish , Animals , Female , Pregnancy , Humans , Placenta , Organogenesis , Vision Disorders , Mammals
9.
Sci Total Environ ; 868: 161702, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36681333

ABSTRACT

Exposure to BPA is recently shown to affect cartilage development in teleost fishes; whether BPS and BPAF, its two most frequently used phenolic analogues have similar effect, however, remains unclear. Here, we utilize zebrafish (Danio rerio) as an in-vivo larval model for systematic comparison of the pharyngeal arch-derived cartilage developmental toxicity of BPA, BPS and BPAF. Zebrafish are continuously exposed to three bisphenol analogues (3-BPs) at a range of concentrations since the embryonic stage (0.5 hpf), and identified cartilage malformations of the mandibular and hyoid pharyngeal arches at larval stage (120 hpf). BPA and BPAF prolong length and broaden cartilage angles; however, BPS shortens length and narrows the angles of skull cartilages. The results of the comparative transcriptome show that FoxO and MAPK signaling pathways are closely associated with the toxicity of BPA and BPAF, while BPS exposure affects energy metabolism-related pathways. Moreover, exposure to 3-BPs have an impact on the oxidative stress status. Our data collectively indicate that BPS and BPAF may not be safer than BPA regarding the impact on pharyngeal cartilage development in fish model, the mechanisms still need explorations, and that these two analogues should be applied with caution.


Subject(s)
Benzhydryl Compounds , Zebrafish , Animals , Zebrafish/metabolism , Larva , Benzhydryl Compounds/toxicity , Gene Expression Profiling , Cartilage
10.
Environ Int ; 172: 107745, 2023 02.
Article in English | MEDLINE | ID: mdl-36657258

ABSTRACT

As a substitute for polybrominated diphenyl ethers (PBDEs), organophosphate flame retardant triphenyl phosphate (TPhP) is widely used in our daily products and diffusely exists in our living surroundings, but there is a paucity of information concerning its neurodevelopmental toxicity. Herein, we investigated the effects of TPhP exposure on developmental parameters, locomotor behavior, oxidative stress, apoptosis and transcriptional levels in zebrafish at different developmental stages, so as to explore the effects of TPhP exposure on zebrafish neural development and the underlying molecular mechanisms. TPhP concentration gradient exposure reduced the survival rate, hatchability, heart rate, body length and eye distance of zebrafish embryos/larvae, and caused malformations of zebrafish larvae. TPhP also leads to abnormal locomotor behaviors, such as reduced swimming distance and swimming speed, and impaired panic avoidance reflex to high light stimulation. TPhP caused ROS accumulation in 96 hpf larvae and induced Nrf2-antioxidant response in zebrafish. In addition, TPhP further activated mitochondrial signaling pathways, which affected apoptosis in the zebrafish eye region, resulting in visual impairment. Neurodevelopmental (mbpa, syn2a, foxo3a and pax6a), Retinoid acid metabolism (cyp26a1, raraa, rbp5, rdh1, crabp1a and rbp2a) and apoptosis-related genes (bcl2a, baxa and casp9) revealed the molecular mechanism of abnormal behavior and phenotypic symptoms, and also indicated that 96 hpf larvae are more sensitive than 7 dpf larvae. Thus, in the present study, we revealed the neurotoxic effects of TPhP at different early life stages in zebrafish, and zebrafish locomotor behavior impairments induced by TPhP exposure are attributed to co-regulation of visuomotor dysfunction and neuro-related genes. These results suggest that the safety of TPhP in organisms and even in humans needs to be further studied.


Subject(s)
Flame Retardants , Zebrafish , Animals , Flame Retardants/toxicity , Flame Retardants/metabolism , Organophosphates/toxicity , Organophosphates/metabolism , Swimming , Zebrafish/metabolism
11.
Environ Sci Pollut Res Int ; 30(13): 38052-38062, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36576618

ABSTRACT

Previous studies have extensively explored impacts of trace elements on human beings and complex relationships with cancers. However, contradictory conclusions may be more challenging to explain due to biological specimen differences. To investigate the distribution of trace elements inside body, we collected serum, whole blood and tissues from 77 patients with esophageal squamous cell carcinoma (ESCC), as well as serum and whole blood from 100 healthy individuals, and determined the concentrations of 13 elements (Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd, and Pb) with inductively coupled plasma-mass spectrometry (ICP-MS). Al, Ni, Cu, Sr, and Cd variations between patients and controls were found to be inconsistent in serum and blood. Concentrations of Cu, As, Se, and Sr in serum were positively correlated with that in whole blood in both case and control group (rs >0.450, P <0.01). Elements in serum had a higher accuracy (87.0%) than whole blood (74.0%) in classifying ESCC patients and healthy individuals with discriminant analysis. As, Cd, and Pb concentrations in cancerous tissues were positively correlated with those in normal epithelium (rs =0.397, 0.571, and 0.542, respectively), while Mn, Cu, and Se accumulated in malignant tissues, with V, Cr, Co, Ni, Sr, and Cd partitioning in normal epithelium (all P <0.05). Thus, certain elements in blood, such as Cu, As, Se, and Sr, were useful in assessing element exposure burdens and accumulation tendency of some elements (Mn, Cu and Se, etc.) was uncovered in tumors. Our investigation demonstrated the variations in trace element distribution for frequently used specimens and further evidence of etiological mechanism is necessary.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Trace Elements , Humans , Trace Elements/analysis , Cadmium , Lead
12.
Environ Res ; 216(Pt 4): 114779, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36370816

ABSTRACT

Evidence indicates that individual or groups of polybrominated diphenyl ethers (PBDEs) are associated with risk of breast cancer (BC). Epidemiological studies of PBDEs and BC progression are scarce. This study aimed to investigate the relationships between PBDE burdens in adipose tissues and prognostic biomarkers of BC as well as progression-free survival (PFS) of patients for the first time. The concentrations of 14 PBDE congeners in breast adipose tissues of 183 cases from the eastern area of southern China were analyzed by gas chromatography-mass spectrometry (GC-MS). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression models for the associations between PBDE levels and prognostic biomarkers. Kaplan-Meier and Cox regression analyses were conducted to identify the correlations between PBDEs and PFS. The results showed that BDE-99 and 190 levels were positively associated with clinical stage and N stage respectively (OR = 2.61 [1.26-5.40], OR = 2.78 [1.04-7.46]). Concentrations of BDE-28 and BDE-183 were negatively associated with the expression of estrogen receptor (ER) (OR = 0.30 [0.11-0.81]; 0.39 [0.15-0.99]) and progesterone receptor (PR) (OR = 0.36 [0.14-0.92]; 0.37 [0.15-0.91]), and increased BDE-47 was associated with lower human epidermal growth factor receptor 2 (HER2) expression (OR = 0.44 [0.23-0.86]). Adipose levels of BDE-71, 99, 138, 153, 154 and total PBDEs were positively associated with p53 expression (all P < 0.05). Finally, BDE-47, 99 and 183 were considered as independent prognostic factors for shorter PFS in the Cox models (adjusted hazard ratios = 3.14 [1.26-7.82]; 2.25 [1.03-4.94]; 2.60 [1.08-6.25], respectively). The recurrence risk and prognosis of BC may be closely bound to the body burdens of certain PBDE congeners. Further epidemiological and experimental studies are needed for confirmation.


Subject(s)
Breast Neoplasms , Halogenated Diphenyl Ethers , Humans , Female , Halogenated Diphenyl Ethers/analysis , Breast Neoplasms/epidemiology , Progression-Free Survival , Prognosis , Adipose Tissue/chemistry , China/epidemiology , Hospitals , Biomarkers
13.
Ecotoxicol Environ Saf ; 248: 114310, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36423367

ABSTRACT

Polybrominated biphenyl ethers (PBDEs) are new persistent pollutants that are widely exist in the environment and have many toxic effects. However, their toxicity mechanisms on neurodevelopment are still unclear. In this study, zebrafish embryos were exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) (control, 10, 50 and 100 µg/L) at 2 h postfertilization (hpf) - 7 dpf. Locomotion analysis indicated that BDE-47 increased spontaneous coiling activity in zebrafish embryos under high-intensity light stimuli and decreased locomotor in zebrafish larvae. RNA-Seq analysis revealed that most of the up-regulated pathways were related to the metabolism of cells and tissues, while the down-regulated pathways were related to neurodevelopment. Consistent with the locomotion and KEGG results, BDE-47 affected the expression of genes for central nervous system (gfap, mbpa, bdnf & pomcb), early neurogenesis (neurog1 & elavl3), and axonal development (tuba1a, tuba1b, tuba1c, syn2a, gap43 & shha). Furthermore, BDE-47 interfered with gene expression of the Wnt signaling pathway, especially during embryonic stages, suggesting that the mechanisms of BDE-47 toxicity to zebrafish at various stages of neurodevelopment may be different. In summary, early neurodevelopment effects and metabolic disturbances may have contributed to the abnormal neurobehavioral changes induced by BDE-47 in zebrafish embryos/larvae, suggesting the neurodevelopmental toxicity of BDE-47.


Subject(s)
Ether , Zebrafish , Animals , Zebrafish/genetics , Transcriptome , Halogenated Diphenyl Ethers/toxicity , Ethyl Ethers , Larva
14.
Ecotoxicol Environ Saf ; 248: 114326, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36435001

ABSTRACT

BACKGROUND: Polybrominated diphenyl ethers (PBDEs), a group of brominated flame retardants (BFRs), were reported exist extensively in various ecological environmental. Studies have indicated that PBDEs induce reproductive toxic effects on human health, but the mechanisms remain poorly understood. In this study, the adult female zebrafish were used to investigate the effects of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) on the reproductive endocrine system and its mechanism. METHODS: Female zebrafish (AB strains) were continuously exposed to BDE-47 at the concentrations of 0, 10, 50, 100 and 500 µg/L till 21 days. The morphology of ovary were stained and evaluated with hematoxylin-eosin (H&E), and levels of sex hormones including follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T) and 17ß-estradiol (E2) and the biomarkers of oxidative stress such as superoxide dismutase (SOD) and malondialdehyde (MDA), were measured via ELISA. Subsequently, the expression of genes along the hypothalamic pituitary-gonad (HPG) and oxidative stress were determined using quantitative real-time PCR (qRT-PCR). RESULT: The results showed that exposure to high level of BDE-47 reduced the index of condition factor (CF) and gonadosomatic index (GSI). Treatment with BDE-47 impaired the normal development and structure of oocytes in zebrafish ovary. Moreover, the steroid hormone of FSH, LH, T and E2 were significantly decreased in BDE-47 exposure group. A dose-dependent elevation in SOD activity and MDA levels were recorded. Meanwhile, the transcription level of cyp19a, cyp19b, fshß, lhß were up-regulated while the transcription of fshr, lhr, cyp17a, 17ßhsd were down-regulated in the gonad of female adult zebrafish. CONCLUSION: Exposure to BDE-47 have detrimental impact on the development of ovary, decreasing sex hormone levels, inducing oxidative damage as well as altering HPG axis-related genes.


Subject(s)
Ether , Halogenated Diphenyl Ethers , Adult , Humans , Animals , Female , Halogenated Diphenyl Ethers/toxicity , Zebrafish , Ethyl Ethers , Luteinizing Hormone , Follicle Stimulating Hormone , Superoxide Dismutase
15.
Article in English | MEDLINE | ID: mdl-36198577

ABSTRACT

BACKGROUND: Polybrominated diphenyl ethers (PBDEs) and their metabolites have severe impact on human health, but few studies focus on their nephrotoxicity. This study was conceived to explore hub genes that may be involved in two hydroxylated polybrominated diphenyl ethers toxicities on impairment of adrenocortical secretory function. METHODS: Gene dataset was obtained from Gene Expression Omnibus (GEO). Principal component analysis and correlation analysis were used to classify the samples. Differentially expressed genes (DEGs) were screened using the limma package in RStudio (version 4.1.0). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome enrichment analyses of DEGs were conducted. Protein-protein interaction (PPI) network was established using STRING network, and genes were filtered by Cytoscape (version 3.8.2). Finally, the hub genes were integrated by plug-in CytoHubba and RobustRankAggreg, and were preliminarily verified by the Comparative Toxicogenomics Database (CTD). RESULTS: GSE8588 dataset was selected in this study. About 190 upregulated and 224 downregulated DEGs in 2-OH-BDE47 group, and 244 upregulated and 276 downregulated DEGs in 2-OH-BDE85 group. Functional enrichment analyses in the GO, KEGG and Reactome indicated the potential involvement of DEGs in endocrine metabolism, oxidative stress mechanisms, regulation of abnormal cell proliferation, apoptosis, DNA damage and repair. 2-OH-BDE85 is more cytotoxic in a dose-dependent manner than 2-OH-BDE47. A total of 98 hub genes were filtered, and 91 nodes and 359 edges composed the PPI network. Besides, 9 direct-acting genes were filtered for the intersection of hub genes by CTD. CONCLUSIONS: OH-PBDEs may induce H295R adrenocortical cancer cells in the disorder of endocrine metabolism, regulation of abnormal cell proliferation, DNA damage and repair. The screened hub genes may play an important role in this dysfunction.


Subject(s)
Computational Biology , Halogenated Diphenyl Ethers , Gene Expression Profiling , Gene Ontology , Halogenated Diphenyl Ethers/toxicity , Humans , Protein Interaction Maps/genetics
16.
Cancers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077776

ABSTRACT

We investigated the associations between multiple serum trace element levels and risk for esophageal squamous cell carcinoma (ESCC). A total of 185 ESCC patients and 191 healthy individuals were recruited in our study. The concentration of 13 trace elements (Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd and Pb) in serum was determined with inductively coupled plasma mass spectrometry (ICP-MS). Logistic regression and the Probit extension of Bayesian Kernel Machine Regression (BKMR) models was established to explore the associations and the cumulative and mixed effects of multiple trace elements on ESCC. Three elements (Zn, Se and Sr) displayed a negative trend with risk for ESCC, and a significant overall effect of the mixture of Al, V, Mn, Ni, Zn, Se and Sr on ESCC was found, with the effects of V, Ni and Sr being nonlinear. Bivariate exposure-response interactions among these trace elements indicated a synergistic effect between Zn and Se, and an impactful difference of V combined with Ni, Sr or Zn. Our results indicate that Ni, V, Al, Mn, Zn, Se and Sr are associated with ESCC risk, providing additional evidence of the complex effects of trace elements disorder during the etiology of EC development.

17.
Environ Res ; 214(Pt 3): 114096, 2022 11.
Article in English | MEDLINE | ID: mdl-35973458

ABSTRACT

Animal studies have indicated that exposure to polybrominated diphenyl ethers (PBDEs) during development can permanently affect blood/liver lipid balance. However, no epidemiological study has assessed the relationship between PBDEs in adipose tissues and blood lipid metabolism. In this study, we explored the associations between PBDEs levels in female adipose tissues and lipid profiles. We recruited 150 female patients undergoing plastic surgery from hospital in Shantou, China, collected their characteristics, clinical information, and adipose tissue samples. Fourteen PBDE congeners in adipose tissues were analyzed by gas chromatography-mass spectrometry (GC-MS). Multiple linear and logistic regression models were used to explore the relationships between PBDEs and lipid profiles, while restricted cubic spline (RCS) regression and Bayesian kernel machine regression (BKMR) models were used to evaluate the nonlinearity of mixtures. Median levels of ΣPBDEs and dominant congeners BDE-153, -209, and -183 in adipose tissues were 73.91, 26.12, 14.10 and 9.01 ng/g lipid, respectively. In the multiple linear model, BDE-153 and BDE-209 were negatively associated with triglycerides (TG), similarly for BDE-190 and total cholesterol (TC). While in the adjusted logistic models, BDE-138 was negatively associated with TC (OR = 0.76, 95%CI: 0.58, 0.99) and total lipids (TL) (OR = 0.76, 95%CI: 0.58, 0.99). Diastolic blood pressure was positively correlated with BDE-28 and BDE-71 (P < 0.05). Furthermore, a non-linear relationship was observed in BDE-138 and blood lipid levels using a RCS model (Pnonlinearity<0.05). BKMR analysis indicated that with the cumulative levels across PBDEs increased, the health risks of hypertriglyceridemia gradually rebounded, and the health risks of hypercholesterolemia and high total lipid gradually rebounded and then declined, but without statistical significance. PBDEs pollution was still prevalent in Shantou city, and several PBDE congeners were significant risk factors for dyslipidemia and blood pressure alteration. There exist deleterious effects of PBDEs and blood lipids.


Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Adipose Tissue/chemistry , Bayes Theorem , China , Environmental Monitoring/methods , Female , Halogenated Diphenyl Ethers/analysis , Humans , Lipids
18.
Sci Total Environ ; 848: 157816, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35931148

ABSTRACT

Perfluorooctane sulfonic acid (PFOS) has been widely detected in environment and organisms. PFOS has been identified as the driving agent for the behavioral changes of zebrafish larvae, while the underlying molecular mechanism remains unclear. In this study, zebrafish embryos/larvae were exposed to 0, 0.04, 0.1, 0.4 and 1 µM PFOS for 166 h. The locomotor behaviors and the mRNA transcription of genes in neuromuscular system were detected. Exposure to PFOS did not affect the hatching/death rates and body length, but increased the heart beat rates and frequency of spontaneous tail coiling. Locomotor behavior in zebrafish larvae of 0.4 and 1 µM PFOS groups were increased in the light condition. Additionally, the levels of acetylcholine (Ach) in 0.4 µM PFOS group and dopamine (DA) in 0.1, 0.4 and 1 µM PFOS groups were found to be significantly increased. The expression of genes related to the synthesis and decomposition of ACh,the synthesis and receptor of DA, and fosab was increased in the different PFOS treatment groups, while the expression of all the other genes of the neuromuscular system were significantly reduced. The findings of this investigation demonstrated that PFOS exposure may alter the locomotor behavior of zebrafish through disrupting the expressions of genes in neuromuscular system. The disturbed process of neurotransmitter transmission and muscle contraction caused by PFOS may be the dominant mechanism of hyperactivity in zebrafish.


Subject(s)
Dopamine , Zebrafish , Acetylcholine , Alkanesulfonic Acids , Animals , Fluorocarbons , Larva , Muscles , Neurotransmitter Agents , RNA, Messenger
19.
Environ Pollut ; 307: 119518, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35618141

ABSTRACT

Environmental heavy metal exposure has been considered to be the risk factor for neurodevelopmental disorders in children. However, the available data on the associations between multiple metals exposure and the risk of dyslexia in China are limited. The purpose of our study was to examine the associations between urinary metal concentrations and Chinese dyslexia risk. A total of 56 Chinese dyslexics and 60 typically developing children were recruited. The urinary concentration of 13 metals were measured by inductively coupled plasma-mass spectrometer (ICP-MS). Binary logistic regression and the Probit extension of Bayesian kernel machine regression (BKMR-P) were used to explore the associations between multiple metal exposure and the risk of Chinese dyslexia. Our results indicated that Co, Zn and Pb were significantly associated with Chinese dyslexia in the multiple-metal exposure model. After adjusting the covariates, a positive association was observed between Pb and the risk of Chinese dyslexia, with the odds ratio (OR) in the highest quartiles of 6.81 (95%CI: 1.07-43.19; p-trend = 0.024). Co and Zn were negatively associated with the risk of Chinese dyslexia. Compared to the lowest quartile, the ORs of Co and Zn in the highest quartile are 0.13 (95%CI: 0.02-0.72; p-trend = 0.026) and 0.18 (95%CI: 0.04-0.88; p-trend = 0.038), respectively. In addition, BKMR-P analysis indicated that with the cumulative level across Co, Zn and Pb increased, the risk of Chinese dyslexia gradually declined and then rebounded, albeit non-significantly, and Pb was the major contributor in this association. In general, the urinary concentrations of Co, Zn and Pb were significantly associated with Chinese dyslexia. More prospective studies are needed to confirm the health effects of multiple metals exposure in children with Chinese dyslexia.


Subject(s)
Dyslexia , Metals, Heavy , Bayes Theorem , Case-Control Studies , Child , China/epidemiology , Dyslexia/chemically induced , Dyslexia/epidemiology , Humans , Lead
20.
Environ Toxicol Pharmacol ; 93: 103885, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35595013

ABSTRACT

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, also known as a developmental toxicant, but its neurobehavioral toxicity remains elusive. This study evaluated the neurobehavioral toxicity and its possible mechanism in larval zebrafish. Embryos at gastrula period (~6 h post fertilization, hpf) were exposure to DEHP (0, 1, 2.5, 5 and 10 mg/L) for 7 days. Spontaneous tail movement in embryos and swimming activity in larvae were monitored. Alterations in the mRNA expression of genes involved in dopamine signaling and apoptosis pathway were assessed. In situ apoptotic cells were assessed by Acridine orange staining, and oxidative damage were measured using enzymatic assay. The behavior results showed that DEHP inhibited spontaneous tail movement and decreased locomotor activities in the light/dark behavioral test. Meanwhile, behavioral changes were accompanied by increased apoptosis and malondialdehyde (MDA) content, decreased superoxide dismutase (SOD) activity and dopamine (DA) content, and perturbed the expression of genes associated with the synthesis (th), reuptake (dat) and metabolism (mao) of DA, with dopamine receptors (DRs), and with the apoptosis pathway (p53, bax, bcl2, caspase-3, caspase-8, caspase-9). The findings will help to illuminate the possible neurobehavioral toxicity mechanisms of organism exposure to DEHP.


Subject(s)
Diethylhexyl Phthalate , Zebrafish , Animals , Diethylhexyl Phthalate/toxicity , Dopamine/metabolism , Larva , Oxidative Stress , Phthalic Acids , Plasticizers/toxicity , Superoxide Dismutase-1 , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...