Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 13: 1041561, 2022.
Article in English | MEDLINE | ID: mdl-36483951

ABSTRACT

Background: The consecutive monoculture of Rehmannia glutinosa leads to a serious decrease in its production and quality. Previous studies have demonstrated that intercropping altered species diversity and rhizosphere microbial diversity. However, it remained unknown whether the impaired growth of monocultured plants could be restored by enhanced belowground interspecific interactions. Method: In the present research, a continuous cropping facilitator Achyranthes bidentata was intercropped with R. glutinosa under pot conditions, and three different types of root barrier treatments were set, including that complete belowground interaction (N), partial belowground interaction (S), and no belowground interspecies interaction (M), with the aims to investigate belowground interaction and the underlying mechanism of alleviated replanting disease of R. glutinosa by intercropping with A. bidentata. Results: The results showed that the land equivalent ratio (LER) of the two years was 1.17, and the system productivity index (SPI) increased by 16.92 % under S treatment, whereas no significant difference was found in N and M regimes. In the rhizosphere soil, intercropping systems had significantly increased the contents of sugars and malic acid in the soil of R. glutinosa, together with the content of organic matter and the invertase and urease activities. Meanwhile, intercropping increased the community diversity of fungi and bacteria, and the relative abundance of potential beneficial bacteria, such as Bacillus, Nitrospira, and Sphingomonas, despite the pathogenic Fusarium oxysporum was still the dominant genus in the rhizospheric soil of R. glutinosa under various treatments. The results of antagonism experiments and exogenous addition of specific bacteria showed that Bacillus spp. isolated from rhizosphere soil had a significant antagonistic effect on the pathogen of R. glutinosa. Conlusion: Taken together, our study indicated that the R. glutinosa//A. bidentata intercropping systems alleviate the consecutive monoculture problem of R. glutinosa by recruiting beneficial bacteria. The studies we have conducted have a positive effect on sustainable agricultural development.

3.
Front Plant Sci ; 13: 954777, 2022.
Article in English | MEDLINE | ID: mdl-36035716

ABSTRACT

Successive planting and monoculture, as common forest management methods, are widely used globally, especially in Chinese fir plantations in the subtropical areas of southern China. Although soil fertility depletion and productivity decline caused by successive planting have been widely reported, the underlying mechanism is still ambiguous. In this study, the composition and diversity of soil microorganisms (rhizosphere and bulk soils) in Chinese fir seedlings exposed to successive planting soils (first-generation Chinese fir seedings, FCP. second-generation Chinese fir seedings, SCP. third-generation Chinese fir seedings, TCP) and broadleaf tree species soil (Phoebe zhennan S. Lee et F. N. Wei, CK) were examined with high-throughput sequencing technology. Our findings revealed that the diversity and richness of bacterial and fungal communities were remarkably reduced in TCP than FCP and SCP, and were remarkably different between FCP and SCP. At the phylum level, the fungi with greatest relative abundance were Basidiomycota (5.74-32.88%) and Ascomycota (57.63-87.38%), while the bacteria with the greatest relative abundance were Acidobacteria (23.16-31.17%) and Proteobacteria (24.71-29.32%) for all treatments in both soil types. Additionally, the relative abundance of some pathogens (Penicillium and Burkholderia) was significantly higher in TCP than in FCP and SCP, suggesting that the presence of pathogens is an important factor in increasing the incidence of soil-borne sickness. Moreover, changes in fungal and bacterial communities were predominantly driven by soil dissolved organic carbon (DOC), DOC/DON ratio (DOCN), NO3 --N, microbial biomass carbon (MBC), and MBC/MBN ratio (MBCN). Overall, the long-term monoculture of Chinese fir promotes the microecological imbalance of rhizosphere and bulk soil, and remarkably reduced soil microbial community diversity. These results can provide a scientific support for the implementation of future management measures for fir plantations (e.g., fertilization, addition of microbial fungicides, and construction of mixed forests).

4.
Microb Ecol ; 84(2): 452-464, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34554283

ABSTRACT

Replanting disease is a growing problem in intensive agricultural systems. Application of bio-fertilizer containing beneficial microbes contributes to disease suppression and is a promising strategy to control replanting disease. However, the effect of both replanting disease and bio-fertilizer amendment on the assembly of crop microbiota in leaves and roots and their relationships to crop yield and quality remains elusive. In these experiments, roots and leaves of Radix pseudostellariae were collected from different consecutive monoculture and bio-fertilizer amended fields, and the associated microbiota were characterized by bacterial 16S rRNA gene sequencing and quantitative PCR. Consecutive monoculture altered the bacterial community structure and composition and significantly increased the abundance of potential pathogenic Ralstonia and Fusarium oxysporum in leaves and roots. Furthermore, bio-fertilizer application alleviated replanting disease by decreasing the pathogen load, increasing the potential beneficial genera Pseudomonas, Streptomyces, Paenibacillus, and Bradyrhizobium. The proportion of positive correlations in the co-occurrence network of bio-fertilizer application was the highest, implying that bio-fertilizer potentially enhanced ecological commensalism or mutualism of the bacterial community across the two compartments. Structural equation models indicated that bio-fertilizer had a positive and indirect effect on both yield and quality by shaping the leaf microbiota and the root microbiota. Our findings highlight the role of leaf and root microbiota on replanting disease, showing that bio-fertilizer contributes to alleviating replanting disease by improving microbe-microbe interactions.


Subject(s)
Microbiota , Paenibacillus , Fertilizers , Paenibacillus/genetics , Plant Leaves , Plant Roots , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
5.
Front Microbiol ; 12: 677654, 2021.
Article in English | MEDLINE | ID: mdl-34194412

ABSTRACT

The complex composition and interaction of root-associated microbes are critical to plant health and performance. In this study, we presented a detailed characterization of three rhizocompartment (rhizosphere, rhizoplane, and root) microbiomes of Achyranthes bidentata under different years of consecutive monoculture by deep sequencing in order to determine keystone microorganisms via co-occurrence network analysis. The network analysis showed that multiple consecutive monoculture (MCM, represented 5Y and 10Y) soils generated some distinct beneficial bacterial taxa such as Bacillus, Fictibacillus, Bradyrhizobium, Shinella, and Herbaspirillum. For fungi, Mortierella substituted for Fusarium in occupying an important position in different rhizocompartments under A. bidentate monoculture. Quantitative PCR analysis confirmed a significant increase in Bacillus, Pseudomonas, and Burkholderia spp. The results of the inoculation assay showed that addition of beneficial bacteria Bacillus subtilis 74 and Bacillus halodurans 75 significantly increased the root length and fresh weight of A. bidentata. Furthermore, three types of phytosterones, as the main allochemicals, were identified both in the rhizosphere soil and in culture medium under sterile conditions by LC-MS/MS. When looking at in vitro interactions, it was found that phytosterones displayed a positive interaction with dominant beneficial species (Bacillus amyloliquefaciens 4 and B. halodurans 75) and had a negative effect on the presence of the pathogenic fungi Fusarium solani and Fusarium oxysporum. Overall, this study demonstrated that consecutive monoculture of A. bidentata can alter the bacterial and fungal community by secreting root exudates, leading to recruitment of beneficial microbes and replacement of plant-specific pathogenic fungi with plant beneficial fungi.

6.
Front Microbiol ; 12: 579920, 2021.
Article in English | MEDLINE | ID: mdl-33790872

ABSTRACT

Under consecutive monoculture, the abundance of pathogenic fungi, such as Fusarium oxysporum in the rhizosphere of Radix pseudostellariae, negatively affects the yield and quality of the plant. Therefore, it is pertinent to explore the role of antagonistic fungi for the management of fungal pathogens such as F. oxysporum. Our PCR-denatured gradient gel electrophoresis (DGGE) results revealed that the diversity of Trichoderma spp. was significantly declined due to extended monoculture. Similarly, quantitative PCR analysis showed a decline in Trichoderma spp., whereas a significant increase was observed in F. oxysporum. Furthermore, seven Trichoderma isolates from the R. pseudostellariae rhizosphere were identified and evaluated in vitro for their potentiality to antagonize F. oxysporum. The highest and lowest percentage of inhibition (PI) observed among these isolates were 47.91 and 16.67%, respectively. In in vivo assays, the R. pseudostellariae treated with four Trichoderma isolates, having PI > 30%, was used to evaluate the biocontrol efficiency against F. oxysporum in which T. harzianum ZC51 enhanced the growth of the plant without displaying any disease symptoms. Furthermore, the expression of eight defense-related genes of R. pseudostellariae in response to a combination of F. oxysporum and T. harzianum ZC51 treatment was checked, and most of these defense genes were found to be upregulated. In conclusion, this study reveals that the extended monoculture of R. pseudostellariae could alter the Trichoderma communities in the plant rhizosphere leading to relatively low level of antagonistic microorganisms. However, T. harzianum ZC51 could inhibit the pathogenic F. oxysporum and induce the expression of R. pseudostellariae defense genes. Hence, T. harzianum ZC51 improves the plant resistance and reduces the growth inhibitory effect of consecutive monoculture problem.

10.
Front Plant Sci ; 11: 787, 2020.
Article in English | MEDLINE | ID: mdl-32625222

ABSTRACT

Rehmannia glutinosa, a perennial medicinal plant, suffers from severe replant disease under consecutive monoculture. The rhizosphere microbiome is vital for soil suppressiveness to diseases and for plant health. Moreover, N-acyl homoserine lactone (AHL)-mediated quorum sensing (QS) regulates diverse behavior in rhizosphere-inhabiting and plant pathogenic bacteria. The dynamics of short-chain AHL-mediated QS bacteria driven by consecutive monoculture and its relationships with R. glutinosa replant disease were explored in this study. The screening of QS bacteria showed that 65 out of 200 strains (32.5%) randomly selected from newly planted soil of R. glutinosa were detected as QS bacteria, mainly consisting of Pseudomonas spp. (55.4%). By contrast, 34 out of 200 (17%) strains from the diseased replant soil were detected as QS bacteria, mainly consisting of Enterobacteriaceae (73.5%). Functional analysis showed most of the QS bacteria belonging to the Pseudomonas genus showed strong antagonistic activities against Fusarium oxysporum or Aspergillus flavus, two main causal agents of R. glutinosa root rot disease. However, the QS strains dominant in the replant soil caused severe wilt disease in the tissue culture seedlings of R. glutinosa. Microbial growth assays demonstrated a concentration-dependent inhibitory effect on the growth of beneficial QS bacteria (i.e., Pseudomonas brassicacearum) by a phenolic acid mixture identified in the root exudates of R. glutinosa, but the opposite was true for harmful QS bacteria (i.e., Enterobacter spp.). Furthermore, it was found that the population of quorum quenching (QQ) bacteria that could disrupt the beneficial P. brassicacearum SZ50 QS system was significantly higher in the replant soil than in the newly planted soil. Most of these QQ bacteria in the replant soil were detected as Acinetobacter spp. The growth of specific QQ bacteria could be promoted by a phenolic acid mixture at a ratio similar to that found in the R. glutinosa rhizosphere. Moreover, these quorum-quenching bacteria showed strong pathogenicity toward the tissue culture seedlings of R. glutinosa. In conclusion, consecutive monoculture of R. glutinosa contributed to the imbalance between beneficial and harmful short-chain AHL-mediated QS bacteria in the rhizosphere, which was mediated not only by specific root exudates but also by the QQ bacterial community.

11.
Plant Dis ; 104(1): 25-34, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31726014

ABSTRACT

Replant disease caused by negative plant-soil feedback commonly occurs in a Pseudostellaria heterophylla monoculture regime. Here, barcoded pyrosequencing of 16S ribosomal DNA amplicons combined with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis was applied to study the shifts in soil bacterial community structure and functional potentials in the rhizosphere of P. heterophylla under consecutive monoculture and different soil amendments (i.e., bio-organic fertilizer application [MF] and paddy-upland rotation [PR]). The results showed that the yield of tuberous roots decreased under P. heterophylla consecutive monoculture and then increased after MF and PR treatments, which was consistent with the changes in soil bacterial diversity. Both principal coordinate analysis and the unweighted pair-group method with arithmetic means cluster analysis showed the distinct difference in bacterial community structure between the consecutively monocultured soil (relatively unhealthy soil) and other relatively healthy soils (i.e., newly planted soil, MF, and PR). Furthermore, taxonomic analysis showed that consecutive monoculture of P. heterophylla significantly decreased the relative abundances of the families Burkholderiaceae and Acidobacteriaceae (subgroup 1), whereas it increased the population density of families Xanthomonadaceae, Phyllobacteriaceae, Sphingobacteriaceae, and Alcaligenaceae, and Fusarium oxysporum. In contrast, the MF and PR treatments recovered the soil microbiome and decreased F. oxysporum abundance through the different ways; for example, the introduction of beneficial microorganisms (in MF) or the switching between anaerobic and aerobic conditions (in PR). In addition, PICRUSt analysis revealed the higher abundances of membrane transport, cell motility, and DNA repair in the consecutively monocultured soil, which might contribute to the root colonization and survival for certain bacterial pathogens under monoculture. These findings highlight the close association between replant disease of P. heterophylla and the variations in structure and potential functions of rhizosphere bacterial community.


Subject(s)
Caryophyllaceae , Phylogeny , Rhizosphere , Soil Microbiology , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics
12.
Front Microbiol ; 10: 2623, 2019.
Article in English | MEDLINE | ID: mdl-31798559

ABSTRACT

Availability of nitrogen (N) in soil changes the composition and activities of microbial community, which is critical for the processing of soil organic matter and health of crop plants. Inappropriate application of N fertilizer can alter the rhizosphere microbial community and disturb the soil N homeostasis. The goal of this study was to assess the effect of different ratio of N fertilizer at various early to late growth stages of rice, while keeping the total N supply constant on rice growth performance, microbial community structure, and soil protein expression in rice rhizosphere. Two different N regimes were applied, i.e., traditional N application (NT) consists of three sessions including 60, 30 and 10% at pre-transplanting, tillering and panicle initiation stages, respectively, while efficient N application (NF) comprises of four sessions, i.e., 30, 30, 30, and 10%), where the fourth session was extended to anthesis stage. Soil metaproteomics combined with Terminal Restriction Fragment Length Polymorphism (T-RFLP) were used to determine the rhizosphere biological process. Under NF application, soil enzymes, nitrogen utilization efficiency and rice yield were significantly higher compared to NT application. T-RFLP and qPCR analysis revealed differences in rice rhizosphere bacterial diversity and structure. NF significantly decreased the specific microbes related to denitrification, but opposite result was observed for bacteria associated with nitrification. Furthermore, soil metaproteomics analysis showed that 88.28% of the soil proteins were derived from microbes, 5.74% from plants, and 6.25% from fauna. Specifically, most of the identified microbial proteins were involved in carbohydrate, amino acid and protein metabolisms. Our experiments revealed that NF positively regulates the functioning of the rhizosphere ecosystem and further enabled us to put new insight into microbial communities and soil protein expression in rice rhizosphere.

13.
Ying Yong Sheng Tai Xue Bao ; 30(10): 3509-3517, 2019 Oct.
Article in Chinese | MEDLINE | ID: mdl-31621238

ABSTRACT

Rehmannia glutinosa, a perennial herbaceous species, belongs to the family Scrophularia-ceae. As a staple medicinal material, its tuberous roots are highly valued in traditional Chinese medicine. However, R. glutinosa suffers from serious consecutive monoculture problems in production, which leads to a decline in both productivity and quality. Phyllosphere bacteria, the most abundant component of phyllosphere microorganisms, play crucial roles in plant growth and health. Characterization of phyllosphere bacteria could provide new insights into the mechanisms of consecutive monoculture problems and their control measures. Meanwhile, the varied taxa could be served as an important indicator of consecutive monoculture problems. The barcoded pyrosequencing of 16S rDNA genes combined with a culture-dependent approach was applied to characterize the shifts of bacterial community structure and diversity in the phyllosphere under consecutive monoculture of R. glutinosa. The results showed that consecutive monoculture clearly affected bacterial community structure in the phyllosphere. The phyllosphere bacterial communities of the two-year monocultured (TY) and the diseased plants (DP) were more similar, and different from the one-year monocultured (OY). The evenness, Shannon and Simpson diversity indices were significantly lower in TY and DP than in OY. Species annotation showed that bacterial community in R. glutinosa phyllosphere mainly consisted of Proteobacteria (91.2%), Firmicutes (5.1%) and Actinobacteria (3.7%). There was no significant difference in the number of detected bacterial taxa. However, Proteobacteria was significantly increased while Firmicutes and Actinobacteria were significantly decreased under consecutive monoculture. At the genus level, the relative abundances of genera Exiguobacterium, Bacillus and Arthrobacter, potentially beneficial microorganisms, were significantly higher in OY than that in TY and DP, but it was opposite for the genus Pseudomonas. The results from the culture-dependent approach and pathogenicity test showed that Pseudomonas plecoglossicida D9, widely isolated from the diseased leaves, was highly pathogenic to leaves. In conclusion, R. glutinosa monoculture resulted in distinct phyllosphere bacterial community variation with the accumulation of pathogen loads at the expense of beneficial microorganisms, which could contribute to the occurrence of leaf disease symptoms,and aggravate R. glutinosa replant disease in a monoculture regime.


Subject(s)
Rehmannia , Bacteria , DNA, Ribosomal , Plant Roots , Pseudomonas
14.
Int J Mol Sci ; 20(15)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349588

ABSTRACT

Nitrogen (N) is one of the indispensable factors in rice growth and development. China holds a premier position in the production of rice and at the same time also faces higher N fertilizer costs along with serious damage to the environment. A better solution is much needed to address these issues, without disrupting the production of rice as an important cereal, while minimizing all the deleterious effects on the environment. Two isogenic lines Kitaake (WT) and its genetically modified line CIPK2 (RC), overexpressing the gene for Calcineurin B-like interacting protein kinase 2 (OsCIPK2) with better nitrogen use efficiency (NUE), were compared for their growth and development under low versus normal levels of N. NUE is a complex trait mainly related to a plant's efficiency in extraction, assimilation, and recycling of N from soil. The microbial population was analyzed using high-throughput Illumina Miseq 16S rRNA sequencing and found that RC with CIPK2, specifically expressed in rice root, not only performed better without nitrogen fertilizer (LN) but also increased the diversity of bacterial communities in rice rhizosphere compartments (rhizosphere, rhizoplane, and endosphere). The relative abundance of beneficial bacteria phyla increased, which are known to promote the circulation and transformation of N in rhizosphere soil. To further explore the potential of RC regarding better performance under LN, the ion fluxes in root apical were detected by non-invasive micro-test technique (NMT). We found that RC can absorb more Ca2+ and NO3- under LN as compared to WT. Finally, compared to WT, RC plants exhibited better growth of root and shoot, and increased yield and N uptake under LN, whereas there was no significant difference in the growth of two rice lines under normal nitrogen (NN) treatment. We are able to get preliminary results, dealing with the OsCIPK2 overexpressed rice line, by studying the rice molecular, physiological, and chemical parameters related to NUE. The results laid the foundation for further research on N absorption and utilization in rice from the soil and the interaction with microbial communities.


Subject(s)
Gene Expression , Microbiota , Nitrogen/metabolism , Oryza/microbiology , Oryza/physiology , Protein Serine-Threonine Kinases/genetics , Rhizosphere , Biodiversity , Nitrogen Cycle/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/microbiology , Plants, Genetically Modified , Protein Serine-Threonine Kinases/metabolism , Soil/chemistry , Soil Microbiology
15.
Sensors (Basel) ; 18(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380709

ABSTRACT

This paper presents an in-situ storage topology for ultra-high-speed burst mode imagers, enabling low noise operation while keeping a high frame depth. The proposed pixel architecture contains a 4T pinned photodiode, a correlated double sampling (CDS) amplification stage, and an in-situ memory bank. Focusing on the sampling noise, the system level trade-off of the proposed pixel architecture is discussed, showing its advantages on the noise, power, and scaling capability. Integrated with an AC coupling CDS stage, the amplification is obtained by exploiting the strong capacitance to the voltage relation of a single NMOS transistor. A comprehensive noise model is developed for optimizing the trade-off between the area and noise. As a proof-of-concept, a prototype imager with a 30 µm pixel pitch was fabricated in a CMOS 130 nm technology. A 108-cell memory bank is implemented allowing dense layout and parallel readout. Two types of CDS amplification stages were investigated. Despite the limited memory capacitance of 10 fF/cell, the photon transfer curves of both pixel types were measured over different operation speeds up to 20 Mfps showing a noise performance of 8.4 e-.

16.
Int J Mol Sci ; 19(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110928

ABSTRACT

Consecutive monoculture of Rehmannia glutinosa, highly valued in traditional Chinese medicine, leads to a severe decline in both quality and yield. Rhizosphere microbiome was reported to be closely associated with the soil health and plant performance. In this study, comparative metagenomics was applied to investigate the shifts in rhizosphere microbial structures and functional potentials under consecutive monoculture. The results showed R. glutinosa monoculture significantly decreased the relative abundances of Pseudomonadaceae and Burkholderiaceae, but significantly increased the relative abundances of Sphingomonadaceae and Streptomycetaceae. Moreover, the abundances of genera Pseudomonas, Azotobacter, Burkholderia, and Lysobacter, among others, were significantly lower in two-year monocultured soil than in one-year cultured soil. For potentially harmful/indicator microorganisms, the percentages of reads categorized to defense mechanisms (i.e., ATP-binding cassette (ABC) transporters, efflux transporter, antibiotic resistance) and biological metabolism (i.e., lipid transport and metabolism, secondary metabolites biosynthesis, transport and catabolism, nucleotide transport and metabolism, transcription) were significantly higher in two-year monocultured soil than in one-year cultured soil, but the opposite was true for potentially beneficial microorganisms, which might disrupt the equilibrium between beneficial and harmful microbes. Collectively, our results provide important insights into the shifts in genomic diversity and functional potentials of rhizosphere microbiome in response to R. glutinosa consecutive monoculture.


Subject(s)
Bacteria , Metagenome , Microbial Consortia/physiology , Rehmannia/microbiology , Rhizosphere , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development
17.
Phytopathology ; 108(12): 1493-1500, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29975158

ABSTRACT

Consecutive monoculture of Rehmannia glutinosa in the same field leads to a severe decline in both quality and yield of tuberous roots, the most useful part in traditional Chinese medicine. Fungi are an important and diverse group of microorganisms in the soil ecosystem and play crucial roles in soil health. In this study, high-throughput pyrosequencing of internal transcribed spacer 2 ribosomal DNA amplicons was applied to gain insight into how consecutive monoculture practice influence and stimulate R. glutinosa rhizosphere and bulk soil fungal communities. The results from nonmetric multidimensional scaling ordination and clustering analysis revealed distinctive differences between rhizosphere and bulk soil fungal communities. However, longer-term monocultured bulk soils were more similar to the rhizosphere soils in comparison with the shorter-term monocultured bulk soils. Moreover, consecutive monoculture caused a gradual shift in the composition and structure of the soil fungal community. The cultivation of this plant led to the appearance of some exclusive operational taxonomic units in rhizosphere or bulk soils that were assigned to the genera Fusarium, Rhizoctonia, and so on. Furthermore, the sum of the relative abundance of species of Fusarium, Cylindrocarpon, and Gibberella (belonging to the family Nectriaceae); Rhizoctonia, Thanatephorus, and Ceratobasidium (belonging to the family Ceratobasidiaceae); and Lectera and Plectosporium (belonging to the family Plectosphaerellaceae) was significantly higher in consecutively monocultured (CM) than in newly planted (NP) soil in both rhizosphere and bulk soils. In particular, Fusarium abundance was significantly higher in CM than in NP in the rhizosphere, and higher in rhizosphere soils than in bulk soils for each treatment. A pathogenicity test showed that both Fusarium strains isolated were pathogenic to R. glutinosa seedlings. In addition, the culture filtrate and mycotoxins produced by Fusarium oxysporum significantly repressed the growth of the antagonistic bacterium, Pseudomonas aeruginosa. In conclusion, consecutive monoculture of R. glutinosa restructured the fungal communities in both rhizosphere and bulk soils but bulk effects developed more slowly over time in comparison with rhizosphere effects. Furthermore, microbial interactions might lead to a reduction in the abundance of beneficial microbes.


Subject(s)
Mycobiome , Plant Diseases/microbiology , Rehmannia/microbiology , Agriculture , Rhizosphere , Soil Microbiology
18.
Int J Mol Sci ; 19(3)2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29538311

ABSTRACT

The production and quality of Rehmannia glutinosa can be dramatically reduced by replant disease under consecutive monoculture. The root-associated microbiome, also known as the second genome of the plant, was investigated to understand its impact on plant health. Culture-dependent and culture-independent pyrosequencing analysis was applied to assess the shifts in soil bacterial communities in the rhizosphere and rhizoplane under consecutive monoculture. The results show that the root-associated microbiome (including rhizosphere and rhizoplane microbiomes) was significantly impacted by rhizocompartments and consecutive monoculture. Consecutive monoculture of R. glutinosa led to a significant decline in the relative abundance of the phyla Firmicutes and Actinobacteria in the rhizosphere and rhizoplane. Furthermore, the families Flavobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae enriched while Pseudomonadaceae, Bacillaceae, and Micrococcaceae decreased under consecutive monoculture. At the genus level, Pseudomonas, Bacillus, and Arthrobacter were prevalent in the newly planted soil, which decreased in consecutive monocultured soils. Besides, culture-dependent analysis confirmed the widespread presence of Pseudomonas spp. and Bacillus spp. in newly planted soil and their strong antagonistic activities against fungal pathogens. In conclusion, R. glutinosa monoculture resulted in distinct root-associated microbiome variation with a reduction in the abundance of beneficial microbes, which might contribute to the declined soil suppressiveness to fungal pathogens in the monoculture regime.


Subject(s)
Bacteria/classification , Microbiota , Rehmannia/microbiology , Rhizosphere , Agriculture/methods , Bacteria/genetics , Bacteria/isolation & purification , DNA Barcoding, Taxonomic , Genotype
19.
Int J Mol Sci ; 19(2)2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29470429

ABSTRACT

Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS), semi-separation intercropping (SS) using a nylon net, and complete separation intercropping (CS) using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs) showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS) showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS) improved levels of soil-available nutrients (nitrogen (N) and phosphorus (P)) and enzymes (urease and acid phosphomonoesterase) as compared to intercropping without belowground interactions (CS). Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillusbrevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P) supply capacity and soil microecosystem stability.


Subject(s)
Agriculture/methods , Arachis/growth & development , Bacteria/metabolism , Crops, Agricultural/growth & development , Soil Microbiology , Zea mays/growth & development , Bacteria/genetics , Biomass , Cluster Analysis , Genes, Bacterial , Photosynthesis , Plant Root Nodulation , Rhizosphere
20.
Front Microbiol ; 8: 1748, 2017.
Article in English | MEDLINE | ID: mdl-28966607

ABSTRACT

Radix pseudostellariae is a perennial tonic medicinal plant, with high medicinal value. However, consecutive monoculture of this plant in the same field results in serious decrease in both yield and quality. In this study, a 3-year field experiment was performed to identify the inhibitory effect of growth caused by prolonged monoculture of R. pseudostellariae. DGGE analysis was used to explore the shifts in the structure and diversity of soil Fusarium and Pseudomonas communities along a 3-year gradient of monoculture. The results demonstrated that extended monoculture significantly boosted the diversity of Fusarium spp., but declined Pseudomonas spp. diversity. Quantitative PCR analysis showed a significant increase in Fusarium oxysporum, but a decline in Pseudomonas spp. Furthermore, abundance of antagonistic Pseudomonas spp. possessing antagonistic ability toward F. oxysporum significantly decreased in consecutively monocultured soils. Phenolic acid mixture at the same ratio as detected in soil could boost mycelial and sporular growth of pathogenic F. oxysporum while inhibit the growth of antagonistic Pseudomonas sp. CJ313. Moreover, plant bioassays showed that Pseudomonas sp. CJ313 had a good performance that protected R. pseudostellariae from infection by F. oxysporum. In conclusion, this study demonstrated that extended monoculture of R. pseudostellariae could alter the Fusarium and Pseudomonas communities in the plant rhizosphere, leading to relatively low level of antagonistic microorganisms, but with relatively high level of pathogenic microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...