Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38568462

ABSTRACT

PURPOSE: This study aimed to identify the genetic causes of male infertility and primary ciliary dyskinesia (PCD)/PCD-like phenotypes in three unrelated Han Chinese families. METHODS: We conducted whole-exome sequencing of three patients with male infertility and PCD/PCD-like phenotypes from three unrelated Chinese families. Ultrastructural and immunostaining analyses of patient spermatozoa and respiratory cilia and in vitro analyses were performed to analyze the effects of SPEF2 variants. Intracytoplasmic sperm injection (ICSI) was administered to three affected patients. RESULTS: We identified four novel SPEF2 variants, including one novel homozygous splicing site variant [NC_000005.10(NM_024867.4): c.4447 + 1G > A] of the SPEF2 gene in family 1, novel compound heterozygous nonsense variants [NC_000005.10(NM_024867.4): c.1339C > T (p.R447*) and NC_000005.10(NM_024867.4): c.1645G > T (p.E549*)] in family 2, and one novel homozygous missense variant [NC_000005.10(NM_024867.4): c.2524G > A (p.D842N)] in family 3. All the patients presented with male infertility and PCD/likely PCD. All variants were present at very low levels in public databases, predicted to be deleterious in silico prediction tools, and were further confirmed deleterious by in vitro analyses. Ultrastructural analyses of the spermatozoa of the patients revealed the absence of the central pair complex in the sperm flagella. Immunostaining of the spermatozoa and respiratory cilia of the patients validated the pathogenicity of the SPEF2 variants. All patients carrying SPEF2 variants underwent one ICSI cycle and delivered healthy infants. CONCLUSION: Our study reported four novel pathogenic variants of SPEF2 in three male patients with infertility and PCD/PCD-like phenotypes, which not only extend the spectrum of SPEF2 mutations but also provide information for genetic counseling and treatment of such conditions.

2.
Mutat Res ; 828: 111854, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38492425

ABSTRACT

BACKGROUND/OBJECTIVE: H. pylori is a recognized bacterial carcinogen in the world to cause gastric cancer (GC). However, the molecular mechanism of H. pylori infection-induced GC is not completely clear. Thus, there is an urgent need to reveal the precise mechanisms regulating cancer development due to H. pylori infection. METHODS: GEO microarray databases and TCGA databases were extracted for the analysis of different expression genes (DEGs). Then, Kaplan-Meier Plotter was used for prognostic analysis. Functional enrichment analysis of TRIP13 was performed by metascape database and TIMER database. Specific role of TRIP13 in GC with H. pylori infection was confirmed by CCK8, cell cycle analysis and WB. RESULTS: A total 10 DEGs were substantially elevated in GC and H. pylori+ tissues and might be associated with H. pylori infection in GC and only the highly expressed TRIP13 was statistically associated with poor prognosis in GC patients. Meanwhile, TRIP13 were upregulated in both CagA-transfected epithelial cells and GC cells. And TRIP13 deficiency inhibited cell proliferation and arrested the cell cycle at the G1 phase. CONCLUSION: Our study suggested that high expression of TRIP13 can promote the proliferation, cell cycle in GC cells, which could be used as a biomarker for H. pylori infection GC.

3.
J Biochem Mol Toxicol ; 37(9): e23391, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37518988

ABSTRACT

Benign prostate hyperplasia (BPH) is the most commonly seen disease among aging males. Transforming growth factor(TGF)-ß-mediated epithelial-mesenchymal transition (EMT) and epithelial overproliferation might be central events in BPH etiology and pathophysiology. In the present study, long noncoding RNA MIR663AHG, miR-765, and FOXK1 formed a competing endogenous RNAs network, modulating TGF-ß-mediated EMT and epithelial overproliferation in BPH-1 cells. miR-765 expression was downregulated in TGF-ß-stimulated BPH-1 cells; miR-765 overexpression ameliorated TGF-ß-mediated EMT and epithelial overproliferation in BPH-1 cells. MIR663AHG directly targeted miR-765 and negatively regulated miR-765; MIR663AHG knockdown also attenuated TGF-ß-induced EMT and epithelial overproliferation in BPH-1 cells, whereas miR-765 inhibition attenuated MIR663AHG knockdown effects on TGF-ß-stimulated BPH-1 cells. miR-765 directly targeted FOXK1 and negatively regulated FOXK1. FOXK1 knockdown attenuated TGF-ß-induced EMT and epithelial overproliferation and promoted autophagy in BPH-1 cells, and partially attenuated miR-765 inhibition effects on TGF-ß-stimulated BPH-1 cells. In conclusion, this study provides a MIR663AHG/miR-765/FOXK1 axis modulating TGF-ß-induced epithelial proliferation and EMT, which might exert an underlying effect on BPH development and act as therapeutic targets for BPH treatment regimens.


Subject(s)
MicroRNAs , Prostatic Hyperplasia , Male , Humans , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/metabolism , Transforming Growth Factor beta/metabolism , Prostate/metabolism , Prostate/pathology , Epithelial-Mesenchymal Transition/genetics , Hyperplasia/metabolism , Cell Movement , Transforming Growth Factor beta1/metabolism , MicroRNAs/metabolism , Cell Proliferation , Epithelial Cells/metabolism , Forkhead Transcription Factors
4.
Cell Commun Signal ; 21(1): 152, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349820

ABSTRACT

BACKGROUND: Prostate cancer (PC) is the most common neoplasm and is the second leading cause of cancer-related deaths in men worldwide. The Hippo tumor suppressor pathway is highly conserved in mammals and plays an important role in carcinogenesis. YAP is one of major key effectors of the Hippo pathway. However, the mechanism supporting abnormal YAP expression in PC remains to be characterized. METHODS: Western blot was used to measure the protein expression of ATXN3 and YAP, while the YAP target genes were measured by real-time PCR. CCK8 assay was used to detect cell viability; transwell invasion assay was used to measure the invasion ability of PC. The xeno-graft tumor model was used for in vivo study. Protein stability assay was used to detect YAP protein degradation. Immuno-precipitation assay was used to detect the interaction domain between YAP and ATXN3. The ubiquitin-based Immuno-precipitation assays were used to detect the specific ubiquitination manner happened on YAP. RESULTS: In the present study, we identified ATXN3, a DUB enzyme in the ubiquitin-specific proteases family, as a bona fide deubiquitylase of YAP in PC. ATXN3 was shown to interact with, deubiquitylate, and stabilize YAP in a deubiquitylation activity-dependent manner. Depletion of ATXN3 decreased the YAP protein level and the expression of YAP/TEAD target genes in PC, including CTGF, ANKRD1 and CYR61. Further mechanistic study revealed that the Josephin domain of ATXN3 interacted with the WW domain of YAP. ATXN3 stabilized YAP protein via inhibiting K48-specific poly-ubiquitination process on YAP protein. In addition, ATXN3 depletion significantly decreased PC cell proliferation, invasion and stem-like properties. The effects induced by ATXN3 depletion could be rescued by further YAP overexpression. CONCLUSIONS: In general, our findings establish a previously undocumented catalytic role for ATXN3 as a deubiquitinating enzyme of YAP and provides a possible target for the therapy of PC. Video Abstract.


Subject(s)
Prostatic Neoplasms , Signal Transduction , Male , Animals , Humans , Transcription Factors/metabolism , Cell Line, Tumor , Prostatic Neoplasms/pathology , Hippo Signaling Pathway , Cell Proliferation , Mammals/metabolism , Ataxin-3/metabolism , Repressor Proteins/metabolism
5.
J Gene Med ; 25(10): e3525, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37178049

ABSTRACT

BACKGROUND: Complex interactions in the tumor microenvironment (TME) between bladder cancer (BLCA) and immune cells are critical for cancer progression. However, studies of neutrophil extracellular trap-associated long non-coding RNAs (NET-lncRNAs) in the TME of BLCA have not been reported. This study aims to screen for NET-lncRNAs in BLCA and to preliminarily explore their effects on BLCA development. METHODS: The correlation of NET-related gene sets, which were identified from the cancer genome atlas (TCGA) BLCA datasets, with lncRNAs was analyzed and the prognosis-related genes were identified through random forest analysis. The least absolute shrinkage and selection operator (LASSO) model was utilized to obtain prognostic risk scores for NET-lncRNAs (NET-Score). We collected clinical BLCA samples, as well as SV-HUC-1 and BLCA cells, to validate the expression of NET-lncRNAs. Survival and independent prognostic analysis were performed. In J82 and UM-UC-3 cells, after NKILA expression was inhibited, cell proliferation and apoptosis levels were detected. RESULTS: NET-related gene sets mainly included CREB5, MMP9, PADI4, CRISPLD2, CD93, DYSF, MAPK3, TECPR2, MAPK1 and PIK3CA. Then, four NET-lncRNAs, MAP 3 K4-AS1, MIR100HG, NKILA and THY1-AS1, were identified. NET-Score had the highest hazard ratio for BLCA. An elevated NET-Score was linked to a significant increase in immune cell infiltration and copy number variation, as well as a notable decrease in survival rate and drug sensitivity. NET-lncRNA-related genes were mainly enriched in the pathways of angiogenesis, immune response, cell cycle and T cell activation. MAP 3 K4-AS1, MIR100HG, NKILA and THY1-AS1 expressions were significantly increased in BLCA tissues. Compared with SV-HUC-1 cells, NKILA expression was elevated in J82 and UM-UC-3 cells. Inhibition of NKILA expression inhibited the proliferation and promoted apoptosis of J82 and UM-UC-3 cells. CONCLUSIONS: Several NET-lncRNAs, including MAP 3 K4-AS1, MIR100HG, NKILA and THY1-AS1, were successfully screened in the BLCA. The NET-Score was an independent prognostic factor for BLCA. In addition, inhibition of NKILA expression suppressed BLCA cell development. The above NET-lncRNAs could serve as potential prognostic markers and targets in BLCA.

6.
Food Chem ; 408: 135210, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36527916

ABSTRACT

Pericarpium Citri Reticulatae (PCR) is used in food and medical herbal formula, and its quality is determined by its age. Raman spectroscopy is a laser technology for molecular fingerprinting. The feasibility of using surface-enhanced Raman spectroscopy (SERS) to determine the PCR age was investigated. The Raman peaks were acquired using a Raman spectrometer with a 785 nm diode laser and were analyzed using principal component analysis (PCA) followed by linear discriminant analysis (PCA-LDA). There were six major peaks at 600, 730, 990, 1370, 1607, and 1742 cm-1 in the SERS spectra, and their intensity, especially the peak at 1607 cm-1, was inversely correlated with the PCR age. The different ages of PCR could be correctly classified with over 90 % accuracy by using PCA-LDA based on the SERS spectra. In conclusion, a Raman spectrometer may be used as a novel method to identify the age of PCR products.


Subject(s)
Citrus , Drugs, Chinese Herbal , Spectrum Analysis, Raman , Drugs, Chinese Herbal/analysis , Discriminant Analysis , Citrus/chemistry
7.
Front Physiol ; 13: 918381, 2022.
Article in English | MEDLINE | ID: mdl-36105290

ABSTRACT

Objectives: To evaluate a new deep neural network (DNN)-based computer-aided diagnosis (CAD) method, namely, a prostate cancer localization network and an integrated multi-modal classification network, to automatically localize prostate cancer on multi-parametric magnetic resonance imaging (mp-MRI) and classify prostate cancer and non-cancerous tissues. Materials and methods: The PROSTAREx database consists of a "training set" (330 suspected lesions from 204 cases) and a "test set" (208 suspected lesions from 104 cases). Sequences include T2-weighted, diffusion-weighted, Ktrans, and apparent diffusion coefficient (ADC) images. For the task of abnormal localization, inspired by V-net, we designed a prostate cancer localization network with mp-MRI data as input to achieve automatic localization of prostate cancer. Combining the concepts of multi-modal learning and ensemble learning, the integrated multi-modal classification network is based on the combination of mp-MRI data as input to distinguish prostate cancer from non-cancerous tissues through a series of operations such as convolution and pooling. The performance of each network in predicting prostate cancer was examined using the receiver operating curve (ROC), and the area under the ROC curve (AUC), sensitivity (TPR), specificity (TNR), accuracy, and Dice similarity coefficient (DSC) were calculated. Results: The prostate cancer localization network exhibited excellent performance in localizing prostate cancer, with an average error of only 1.64 mm compared to the labeled results, an error of about 6%. On the test dataset, the network had a sensitivity of 0.92, specificity of 0.90, PPV of 0.91, NPV of 0.93, and DSC of 0.84. Compared with multi-modal classification networks, the performance of single-modal classification networks is slightly inadequate. The integrated multi-modal classification network performed best in classifying prostate cancer and non-cancerous tissues with a TPR of 0.95, TNR of 0.82, F1-Score of 0.8920, AUC of 0.912, and accuracy of 0.885, which fully confirmed the feasibility of the ensemble learning approach. Conclusion: The proposed DNN-based prostate cancer localization network and integrated multi-modal classification network yielded high performance in experiments, demonstrating that the prostate cancer localization network and integrated multi-modal classification network can be used for computer-aided diagnosis (CAD) of prostate cancer localization and classification.

8.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 987-998, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35880568

ABSTRACT

Bladder cancer (BC) is one of the most prevalent and life-threatening cancers among the male population worldwide. Sex determining region Y-box protein 5 (SOX5) plays important roles in a variety of human cancers. However, little research has been conducted on the function and underlying mechanism of SOX5 in BC. In the present study, we first reveal the increased expression of SOX5 in BC tissues and in vitro cells lines. Second, we discover that inhibition of SOX5 inhibits cell growth and migration but promotes cell apoptosis. Meanwhile, ectopic SOX5 expression stimulates cell growth and migration in BC cells. Then, we show that suppressing SOX5 inhibits the expression of DNA methyltransferase 1 (DNMT1), and that overexpressing DNMT1 alleviates the cell progress of BC cells inhibited by SOX5. Furthermore, we demonstrate that DNMT1 inhibits p21 expression by affecting DNA methylation of the p21 promoter. Collectively, we demonstrate that SOX5 exerts its functions in BC cells by modulating the SOX5/DNMT1/p21 pathway. Finally, we demonstrate that SOX5 knockdown inhibits xenograft tumor growth in vivo. In conclusion, our study elucidates the oncogenic role of SOX5 and its underlying molecular mechanism in BC, and reveals a novel pathway which has the potential to serve as a diagnostic biomarker and therapeutic target for BC.


Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , SOXD Transcription Factors/genetics , SOXD Transcription Factors/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
9.
Oncogene ; 41(11): 1610-1621, 2022 03.
Article in English | MEDLINE | ID: mdl-35094010

ABSTRACT

Cell division cycle-associated 8 (CDCA8) is a component of chromosomal passenger complex (CPC) that participates in mitotic regulation. Although cancer-related CDCA8 hyperactivation has been widely observed, its molecular mechanism remains elusive. Here, we report that CDCA8 overexpression maintains tumorigenicity and is associated with poor clinical outcome in patients with prostate cancer (PCa). Notably, enhancer of zeste homolog 2 (EZH2) is identified to be responsible for CDCA8 activation in PCa. Genome-wide assays revealed that EZH2-induced H3K27 trimethylation represses let-7b expression and thus protects the let-7b-targeting CDCA8 transcripts. More importantly, EZH2 facilitates the self-activation of E2F1 by recruiting E2F1 to its own promoter region in a methylation-independent manner. The high level of E2F1 further promotes transcription of CDCA8 along with the other CPC subunits. Taken together, our study suggests that EZH2-mediated cell cycle regulation in PCa relies on both its methyltransferase and non-methyltransferase activities.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Prostatic Neoplasms , Cell Cycle Proteins/genetics , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Methylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
10.
Front Genet ; 13: 1100317, 2022.
Article in English | MEDLINE | ID: mdl-36685901

ABSTRACT

Bladder cancer (BLCA) is featured with high incidence and mortality. Whether the IFN-γ signaling could be used as an immunotherapy determinant for BLCA has not been fully confirmed. In this study, the transcriptome data and clinical information of BLCA samples were collected from The Cancer Genome Atlas (TCGA). Besides, four immunotherapy cohorts including IMvigor210 cohort, Gide cohort, Van Allen cohort, and Lauss cohort were collected. The Xiangya real-world cohort was used for independent validation. An IFN-γ-related signature was developed and validated in BLCA for predicting prognosis, mutation, tumor microenvironment status, and immunotherapy response. This is the first study focusing on the comprehensive evaluation of predictive values on the IFN-γ-related signature in BLCA. The potential clinical application of the IFN-γ-related signature was expected to be further validated with more prospective clinical cohorts.

11.
Cell Signal ; 84: 110004, 2021 08.
Article in English | MEDLINE | ID: mdl-33839256

ABSTRACT

Uncontrolled proliferation and migration of benign prostatic hyperplasia (BPH) epithelial cells play a critical role in the pathogenesis of BPH. The regulatory roles of microRNAs (miRNAs) in multiple human diseases have been observed. This study was dedicated to investigating the regulatory effects of the miR-223-3p on the proliferation and migration of BPH progress. In the present study, the aberrant upregulation of miR-223-3p in BPH samples and BPH-1 cells was determined. TGF-ß stimulation induced miR-223-3p expression, promoted BPH-1 cell viability and DNA synthesis, inhibited BPH-1 cell apoptosis, and decreased pro-apoptotic Bax/caspase 3. These changes induced by TGF-ß stimulation were further enhanced the overexpression of miR-223-3p and attenuated via the inhibition of miR-223-3p. Under TGF-ß stimulation, the overexpression of miR-223-3p enhanced, whereas the inhibition of miR-223-3p inhibited the EMT and MAPK signaling pathways. By targeting the MAP1B 3'UTR, miR-223-3p repressed MAP1B expression. In contrast to miR-223-3p overexpression, MAP1B overexpression attenuated TGF-ß-induced changes in BPH-1 cell phenotypes, pro-apoptotic Bax/caspase 3, and the EMT and MAPK signaling pathways; more importantly, MAP1B overexpression significantly attenuated the roles of miR-223-3p overexpression in BPH-1 cell phenotypes, pro-apoptotic Bax/caspase 3, and the EMT and MAPK signaling pathways under TGF-ß stimulation. In conclusion, miR-223-3p aggravates the uncontrolled proliferation and migration of BPH-1 cells through targeting MAP1B. The EMT and MAPK signaling pathways might be involved.


Subject(s)
MicroRNAs , Microtubule-Associated Proteins/genetics , Prostatic Hyperplasia , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta/pharmacology
12.
Mol Cancer Ther ; 19(10): 2023-2033, 2020 10.
Article in English | MEDLINE | ID: mdl-32855270

ABSTRACT

Enhancer of zester homolog 2 (EZH2), a histone lysine methyltransferase and the catalytic component of polycomb repressive complex 2, has been extensively investigated as a chromatin regulator and a transcriptional suppressor by methylating H3 at lysine 27 (H3K27). EZH2 is upregulated or mutated in most cancers, and its expression levels are negatively associated with clinical outcomes. However, the current developed small-molecule inhibitors targeting EZH2 enzymatic activities could not inhibit the growth and progression of solid tumors. Here, we discovered an antihistamine drug, ebastine, as a novel EZH2 inhibitor by targeting EZH2 transcription and subsequently downregulating EZH2 protein level and H3K27 trimethylation in multiple cancer cell lines at concentrations below 10 µmol/L. The inhibition of EZH2 by ebastine further impaired the progression, migration, and invasiveness of these cancer cells. Overexpression of Ezh2 wild-type and its mutant, H689A (lacking methyltransferase activity), rescued the neoplastic properties of these cancer cells after ebastine treatment, suggesting that EZH2 targeted by ebastine is independent of its enzymatic function. Next-generation RNA-sequencing analysis also revealed that C4-2 cells treated with 8 µmol/L ebastine showed a gene profiling pattern similar to EZH2-knockdown C4-2 cells, which was distinctively different from cells treated with GSK126, an EZH2 enzyme inhibitor. In addition, ebastine treatment effectively reduced tumor growth and progression, and enhanced progression-free survival in triple-negative breast cancer and drug-resistant castration-resistant prostate cancer patient-derived xenograft mice. Our data demonstrated that ebastine is a novel, safe, and potent anticancer agent for patients with advanced cancer by targeting the oncoprotein EZH2.


Subject(s)
Butyrophenones/therapeutic use , Enhancer of Zeste Homolog 2 Protein/drug effects , Histamine H1 Antagonists/therapeutic use , Piperidines/therapeutic use , Butyrophenones/pharmacology , Female , Histamine H1 Antagonists/pharmacology , Humans , Male , Piperidines/pharmacology
13.
Life Sci ; 261: 118311, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32861793

ABSTRACT

AIM: Bladder cancer (BCa) is one of the most commonly occurring urological malignancy. DNA methylation mediated by DNA methyltransferase 1 (DNMT1) plays a crucial role in the physiological and pathological processes of cancer. However, the role of upstream regulatory factors and downstream target genes of DNA methylation mediated by DNMT1 needs further study in BCa. We aim to discover the upstream regulatory factor and downstream target gene of DNMT1, which form a signaling pathway to regulate the progression of BCa. MAIN METHODS: DNMT1 expression in BCa tissues and cells was detected by qPCR and Western Blot. Balbc/nu/nu mice were used to determine the relationship between DNMT1 expression and tumor growth. CCK8, EdU, and transwell assays were employed to measure cell viability, proliferation, and migration respectively. RNA immunoprecipitation (RIP) assays and dual luciferase reporter assays were applied to determine the relationships among DNMT1, miR-152-3p and PTEN. KEY FINDINGS: A significant up-regulation of DNMT1 in BCa tissues and cells, and silencing of DNMT1 expression inhibited the tumor growth in vivo. Knockdown of DNMT1 inhibited the cell growth and migration of BCa cells. miR-152-3p inhibited the DNMT1 and over-expression of DNMT1 restored the cellular function of miR-152-3p in BCa cells. DNMT1 regulated the phosphatase and tensin homolog (PTEN) expression via modulating the status of DNA methylation in the promoter of PTEN. SIGNIFICANCE: This study confirmed the role and underlying mechanism of DNMT1-mediated DNA methylation and displayed a novel regulatory pathway miR-152/DNMT1/PTEN in BCa, thus, providing a potential diagnostic and therapeutic targets for BCa.


Subject(s)
MicroRNAs/genetics , PTEN Phosphohydrolase/genetics , Repressor Proteins/genetics , Urinary Bladder Neoplasms/genetics , Animals , Cell Line, Tumor , CpG Islands/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Silencing , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
Cancer Med ; 9(20): 7524-7536, 2020 10.
Article in English | MEDLINE | ID: mdl-32860339

ABSTRACT

To evaluate whether the addition of biomarkers to traditional clinicopathological parameters may help to increase the accurate prediction of prostate re-biopsy outcome. A training cohort with 98 patients and a validation cohort with 72 patients were retrospectively recruited into our study. Immunohistochemical analysis was used to evaluate the immunoreactivity of a group of biomarkers in the initial negative biopsy normal-looking tissues of the training and validation cohorts. p-STAT3, Mcm2, and/or MSR1 were selected out of 10 biomarkers to construct a biomarker index for predicting cancer and high-grade prostate cancer (HGPCa) in the training cohort based on the stepwise logistic regression analysis; these biomarkers were then validated in the validation cohort. In the training cohort study, we found that the biomarker index was independently associated with the re-biopsy outcomes of cancer and HGPCa. Moreover supplementing the biomarker index with traditional clinical-pathological parameters can improve the area under the receiver operating characteristic curve of the model from 0.722 to 0.842 and from 0.735 to 0.842, respectively, for predicting cancer and HGPCa at re-biopsy. In the decision-making analysis, we found the model supplemented with the biomarker index can improve patients' net benefit. The application of the model to clinical practice, at a 10% risk threshold, would reduce the number of biopsies by 34.7% while delaying the diagnosis of 7.8% cancers and would reduce the number of biopsies by 73.5% while delaying the diagnosis of 17.8% HGPCas. Taken together, supplementing the biomarker index with clinicopathological parameters may help urologists in re-biopsy decision-making processes.


Subject(s)
Biomarkers, Tumor , Biomarkers , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/diagnosis , Aged , Biopsy , Clinical Decision-Making , Decision Trees , Disease Management , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Prostatic Neoplasms/etiology , Prostatic Neoplasms/therapy , ROC Curve , Reproducibility of Results
15.
Clin Transl Med ; 10(1): 363-373, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32508049

ABSTRACT

BACKGROUND: A high prevalence of osteoblastic bone metastases is characteristic of prostate cancer. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serological marker for prostate cancer. However, whether PSA modulates the osteogenic process remains largely unknown. In this study, we explored the effect of PSA on modulating the osteoblastic differentiation of mesenchymal stem cells (MSCs). In this study, we used flow cytometry, CCK-8 assay, Alizarin red S (ARS) staining and quantification, alkaline phosphatase (ALP) activity and staining, Western blotting, and quantitative real-time PCR (qRT-PCR) to explore the effect of PSA on osteogenic differentiation of MSCs. RESULTS: We first demonstrated that although PSA did not affect the proliferation, morphology, or phenotype of MSCs, it significantly promoted the osteogenic differentiation of MSCs in a concentration-dependent manner. Furthermore, we demonstrated that PSA promoted the osteogenic differentiation of MSCs by elevating the expression of Cadherin 11 in MSCs and, thus, activating the Akt signaling pathway. CONCLUSIONS: In conclusion, we demonstrated that PSA could promote the osteogenesis of MSCs through Akt signaling pathway activation by elevating the expression of cadherin-11 in MSCs. These findings imply a possible role of PSA in osteoblastic bone metastases in prostate cancer.

16.
Cell Death Dis ; 10(9): 635, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455760

ABSTRACT

Epidemiological studies show obvious gender differences in the incidence and the prognosis of bladder cancer (BCa). Estrogen receptor alpha (ERα) was recently shown to play a protective role in BCa. However, the mechanisms by which ERα mediates BCa progression need to be further elucidated. In the present study, we explored the mechanisms by which ERα inhibits BCa invasion by modulating circRNA levels. ERα suppressed BCa invasion by decreasing circ_0023642 expression. Chromatin immunoprecipitation (ChIP) and luciferase assays revealed that ERα reduced circ_0023642 expression by regulating the expression of its host gene, UVRAG, at the transcriptional level. ERα decreased circ_0023642 levels and subsequently increased miR-490-5p expression, resulting in decreased EGFR expression to suppress BCa cell invasion. Circ_0023642 was demonstrated to directly bind to miR-490-5p. Notably, miR-490-5p regulated EGFR expression by binding to the miR-490-5p-binding site located in the 3'-untranslated region (UTR) of the EGFR mRNA. Preclinical studies using an in vivo mouse model also confirmed that this ERα/circ_0023642/miR-490-5p/EGFR signaling pathway suppressed BCa progression. Altogether, this newly identified pathway may serve as the basis for developing novel therapeutic strategies to treat BCa.


Subject(s)
Estrogen Receptor alpha/metabolism , MicroRNAs/metabolism , Urinary Bladder Neoplasms/metabolism , Animals , Cell Line, Tumor , ErbB Receptors/biosynthesis , ErbB Receptors/genetics , Estrogen Receptor alpha/genetics , Female , Heterografts , Humans , Mice , MicroRNAs/genetics , Neoplasm Invasiveness , Signal Transduction , Transfection , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
17.
Int J Nanomedicine ; 14: 149-159, 2019.
Article in English | MEDLINE | ID: mdl-30613143

ABSTRACT

PURPOSE: PB is one of the most severe complications of late stage prostate cancer and negatively impacts patient quality of life. A major challenge for the treatment of cancer bone metastasis is the management of efficient drug delivery to metastatic bone lesion. We aimed to explore the use of aptamers as promising tools to develop a targeted drug delivery system for PBs. MATERIALS AND METHODS: In vivo SELEX was applied to identify bone targeting aptamer in a mouse model with PBs. RESULTS: The aptamer (designated as "PB") with the highest bone targeting frequency in mice bearing PC3 PB was selected for further analysis. The PB aptamer specifically targeted modulated endothelial cells in response to cancer cells in the bones of mice bearing PC3 PBs. The targeting efficiency of the PB aptamer conjugated to gold particles was verified in vivo. CONCLUSION: This investigation highlights the promise of in vivo SELEX for the discovery of bone targeting aptamers for use in drug delivery.


Subject(s)
Aptamers, Nucleotide/metabolism , Bone Neoplasms/secondary , Prostatic Neoplasms/pathology , SELEX Aptamer Technique/methods , Animals , Bone Marrow/pathology , Cell Line, Tumor , Disease Models, Animal , Drug Delivery Systems , Endocytosis , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lysosomes/metabolism , Male , Mice, Nude
18.
Oncotarget ; 8(35): 59156-59164, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28938626

ABSTRACT

Early evidences have showed that mast cells could infiltrate into benign prostatic hyperplasia (BPH) tissues, but the exact role of mast cells in BPH development remains unclear. In this study, we identified more mast cells existing in human BPH tissues compared with that in the normal prostate. In the in vitro co-culture system, BPH-1 prostate cells promoted activation and migration of mast cells, and mast cells conversely stimulated BPH-1 cells proliferation significantly. Molecular analysis demonstrated that mast cell-derived interleukin 6 (IL-6) could activate STAT3/Cyclin D1 signals in BPH-1 cells. Blocking IL-6 or STAT3 partially reverse the capacity of mast cells to enhance BPH-1 cell proliferation. Our findings suggest that infiltrating mast cells in BPH tissues could promote BPH development via IL-6/STAT3/Cyclin D1 signals. Therefore, targeting infiltrating mast cells may improve the therapeutic effect of BPH.

SELECTION OF CITATIONS
SEARCH DETAIL
...