Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Theranostics ; 13(10): 3402-3418, 2023.
Article in English | MEDLINE | ID: mdl-37351172

ABSTRACT

Neuroblastoma (NB) is a pediatric malignancy that accounts for 15% of cancer-related childhood mortality. High-risk NB requires an aggressive chemoradiotherapy regimen that causes significant off-target toxicity. Despite this invasive treatment, many patients either relapse or do not respond adequately. Recent studies suggest that improving tumor perfusion can enhance drug accumulation and distribution within the tumor tissue, potentially augmenting treatment effects without inflicting systemic toxicity. Accordingly, methods that transiently increase tumor perfusion prior to treatment may help combat this disease. Here, we show the use of gene therapy to confer inducible nitric oxide synthase (iNOS) expression solely in the tumor space, using focused ultrasound targeting. NOS catalyzes the reaction that generates nitric oxide (NO), a potent endogenous vasodilator. This study reports the development of a targeted non-viral image-guided platform to deliver iNOS-expressing plasmid DNA (pDNA) to vascular endothelial cells encasing tumor blood vessels. Following transfection, longitudinal quantitative contrast-enhanced ultrasound (qCEUS) imaging revealed an increase in tumor perfusion over 72 h, attributed to elevated intratumoral iNOS expression. Methods: To construct a gene delivery vector, cationic ultrasound-responsive agents (known as "microbubbles") were employed to carry pDNA in circulation and transfect tumor vascular endothelial cells in vivo using focused ultrasound (FUS) energy. This was followed by liposomal doxorubicin (L-DOX) treatment. The post-transfection tumor response was monitored longitudinally using qCEUS imaging to determine relative changes in blood volumes and perfusion rates. After therapy, ex vivo analysis of tumors was performed to examine the bioeffects associated with iNOS expression. Results: By combining FUS therapy with cationic ultrasound contrast agents (UCAs), we achieved selective intratumoral transfection of pDNA encoding the iNOS enzyme. While transitory, the degree of expression was sufficient to induce significant increases in tumoral perfusion, to appreciably enhance the chemotherapeutic payload and to extend survival time in an orthotopic xenograft model. Conclusion: We have demonstrated the ability of a novel targeted non-viral gene therapy strategy to enhance tumor perfusion and improve L-DOX delivery to NB xenografts. While our results demonstrate that transiently increasing tumor perfusion improves liposome-encapsulated chemotherapeutic uptake and distribution, we expect that our iNOS gene delivery paradigm can also significantly improve radio and immunotherapies by increasing the delivery of radiosensitizers and immunomodulators, potentially improving upon current NB treatment without concomitant adverse effects. Our findings further suggest that qCEUS imaging can effectively monitor changes in tumor perfusion in vivo, allowing the identification of an ideal time-point to administer therapy.


Subject(s)
Neuroblastoma , Nitric Oxide , Child , Humans , Nitric Oxide/metabolism , Endothelial Cells/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neuroblastoma/drug therapy , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , DNA , Genetic Therapy , Perfusion
2.
Int J Hyperthermia ; 40(1): 2222941, 2023.
Article in English | MEDLINE | ID: mdl-37344380

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common extracranial solid tumor of childhood, and high-risk disease is resistant to intensive treatment. Histotripsy is a focused ultrasound therapy under development for tissue ablation via bubble activity. The goal of this study was to assess outcomes of histotripsy ablation in a xenograft model of high-risk NB. METHODS: Female NCr nude mice received NGP-luciferase cells intrarenally. Under ultrasound image guidance, histotripsy pulses were applied over a distance of 4-6 mm within the tumors. Bioluminescence indicative of tumor viability was quantified before, immediately after, and 24 h after histotripsy exposure. Tumors were immunostained to assess apoptosis (TUNEL), endothelium (endomucin), pericytes (αSMA), hypoxia (pimonidazole), vascular endothelial growth factor A (VEGFA), and platelet-derived growth factor-B (PDGF-B). The apoptotic cytokine TNFα and its downstream effector cleaved caspase-3 (c-casp-3) were assessed with SDS-PAGE. RESULTS: Histotripsy induced a 50% reduction in bioluminescence compared to untreated controls, with an absence of nuclei in the treatment core surrounded by a dense rim of TUNEL-positive cells. Tumor regions not targeted by histotripsy also showed an increase in TUNEL staining density. Increased apoptosis in histotripsy samples was consistent with increases in TNFα and c-casp-3 relative to controls. Treated tumors exhibited a decrease in hypoxia, VEGF, PDGF-B, and pericyte coverage of vasculature compared to control samples. Further, increases in vasodilation were found in histotripsy-treated specimens. CONCLUSIONS: In addition to ablative effects, histotripsy was found to drive tumor apoptosis through intrinsic pathways, altering blood vessel architecture, and reducing hypoxia.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Neuroblastoma , Animals , Mice , Humans , Female , Vascular Endothelial Growth Factor A , Tumor Necrosis Factor-alpha , Heterografts , Mice, Nude , Neuroblastoma/therapy , Hypoxia , Apoptosis , High-Intensity Focused Ultrasound Ablation/methods
3.
Angiogenesis ; 22(1): 197-209, 2019 02.
Article in English | MEDLINE | ID: mdl-30324336

ABSTRACT

Staphylococcus aureus infection is one of the leading causes of morbidity in hospitalized patients in the United States, an effect compounded by increasing antibiotic resistance. The secreted agent hemolysin alpha toxin (Hla) requires the receptor A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10) to mediate its toxic effects. We hypothesized that these effects are in part regulated by Notch signaling, for which ADAM10 activation is essential. Notch proteins function in developmental and pathological angiogenesis via the modulation of key pathways in endothelial and perivascular cells. Thus, we hypothesized that Hla would activate Notch in vascular cells. Human umbilical vein endothelial cells were treated with recombinant Hla (rHla), Hla-H35L (genetically inactivated Hla), or Hank's solution (HBSS), and probed by different methods. Luciferase assays showed that Hla (0.01 µg/mL) increased Notch activation by 1.75 ± 0.5-fold as compared to HBSS controls (p < 0.05), whereas Hla-H35L had no effect. Immunocytochemistry and Western blotting confirmed these findings and revealed that ADAM10 and γ-secretase are required for Notch activation after inhibitor and siRNA assays. Retinal EC in mice engineered to express yellow fluorescent protein (YFP) upon Notch activation demonstrated significantly greater YFP intensity after Hla injection than controls. Aortic rings from Notch reporter mice embedded in matrix and incubated with rHla or Hla-H35L demonstrate increased Notch activation occurs at tip cells during sprouting. These mice also had higher skin YFP intensity and area of expression after subcutaneous inoculation of S. aureus expressing Hla than a strain lacking Hla in both EC and pericytes assessed by microscopy. Human liver displayed strikingly higher Notch expression in EC and pericytes during S. aureus infection by immunohistochemistry than tissues from uninfected patients. In sum, our results demonstrate that the S. aureus toxin Hla can potently activate Notch in vascular cells, an effect which may contribute to the pathobiology of infection with this microorganism.


Subject(s)
Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Hemolysin Proteins/toxicity , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Notch/metabolism , Signal Transduction/drug effects , Staphylococcus aureus/chemistry , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Hemolysin Proteins/chemistry , Human Umbilical Vein Endothelial Cells/pathology , Humans , Membrane Proteins/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity
4.
Nucleic Acids Res ; 39(5): 1801-10, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21062827

ABSTRACT

Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.


Subject(s)
Archaeal Proteins/chemistry , DNA-Directed DNA Polymerase/chemistry , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Directed Molecular Evolution , Molecular Sequence Data , Nucleotides/chemistry , Nucleotides/metabolism , Phosphates/chemistry , Protein Engineering , Protein Structure, Tertiary , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL