Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(6): e0252841, 2021.
Article in English | MEDLINE | ID: mdl-34161378

ABSTRACT

BACKGROUND: Outbreaks of emerging infectious diseases, such as COVID-19, have negative impacts on bystander cardiopulmonary resuscitation (BCPR) for fear of transmission while breaking social distancing rules. The latest guidelines recommend hands-only cardiopulmonary resuscitation (CPR) and facemask use. However, public willingness in this setup remains unknown. METHODS: A cross-sectional, unrestricted volunteer Internet survey was conducted to assess individuals' attitudes and behaviors toward performing BCPR, pre-existing CPR training, occupational identity, age group, and gender. The raking method for weights and a regression analysis for the predictors of willingness were performed. RESULTS: Among 1,347 eligible respondents, 822 (61%) had negative attitudes toward performing BCPR. Healthcare providers (HCPs) and those with pre-existing CPR training had fewer negative attitudes (p < 0.001); HCPs and those with pre-existing CPR training and unchanged attitude showed more positive behaviors toward BCPR (p < 0.001). Further, 9.7% of the respondents would absolutely refuse to perform BCPR. In contrast, 16.9% would perform BCPR directly despite the outbreak. Approximately 9.9% would perform it if they were instructed, 23.5%, if they wore facemasks, and 40.1%, if they were to perform hands-only CPR. Interestingly, among the 822 respondents with negative attitudes, over 85% still tended to perform BCPR in the abovementioned situations. The weighted analysis showed similar results. The adjusted predictors for lower negative attitudes toward BCPR were younger age, being a man, and being an HCP; those for more positive behaviors were younger age and being an HCP. CONCLUSIONS: Outbreaks of emerging infectious diseases, such as COVID-19, have negative impacts on attitudes and behaviors toward BCPR. Younger individuals, men, HCPs, and those with pre-existing CPR training tended to show fewer negative attitudes and behaviors. Meanwhile, most individuals with negative attitudes still expressed positive behaviors under safer measures such as facemask protection, hands-only CPR, and available dispatch instructions.


Subject(s)
COVID-19/epidemiology , Cardiopulmonary Resuscitation/psychology , Public Opinion , Adult , Aged , Cardiopulmonary Resuscitation/education , Cardiopulmonary Resuscitation/methods , Cross-Sectional Studies , Female , Hand , Health Knowledge, Attitudes, Practice , Health Personnel/psychology , Humans , Male , Masks , Middle Aged , Taiwan , Young Adult
2.
Data Brief ; 33: 106419, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33117865

ABSTRACT

A systematic collection of voltage reflection data for semi-insulating N-GaN wafer surface along with the reference reflection voltages are accomplished using a very stable continuous wave (CW) frequency stable probe source. The 2″ diameter direct-bandgap 5 µm silicon doped 105 Ω-cm GaN on 434 µm sapphire is a commercial sample and was mounted in the path of collimated BWO generated millimeter wave beam with spot size ∼3 mm and rotated 64.5° to millimeter wave reflected energy into an antenna fed zero-bias Schottky barrier diode (ZBD), a negative polarity detector with responsivity 3.6 V/mW. Data obtained pertain to photon energies between 400 and 700 µeV (107.35-165 GHz). Data contains the 30-sample average and respective standard deviations for reference (mirror) and N-GaN reflected voltages. Anomalies in d.c. reflection coefficients (based on the raw data) are identified for users.

3.
Adv Mater ; 32(46): e2004080, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33048430

ABSTRACT

Layered perovskites have been employed for various optoelectronic devices including solar cells and light-emitting diodes for improved stability, which need exciton transport along both the in-plane and the out-of-plane directions. However, it is not clear yet what determines the exciton transport along the in-plane direction, which is important to understand its impact toward electronic devices. Here, by employing both steady-state and transient photoluminescence mapping, it is found that in-plane exciton diffusivities in layered perovskites are sensitive to both the number of layers and organic cations. Apart from exciton-phonon coupling, the octahedral distortion is revealed to significantly affect the exciton diffusion process, determined by temperature-dependent photoluminescence, light-intensity-dependent time-resolved photoluminescence, and density function theory calculations. A simple fluorine substitution to phenethylammonium for the organic cations to tune the structural rigidity and octahedral distortion yields a record exciton diffusivity of 1.91 cm2 s-1 and a diffusion length of 405 nm along the in-plane direction. This study provides guidance to manipulate exciton diffusion by modifying organic cations in layered perovskites.

4.
Data Brief ; 28: 104996, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31909105

ABSTRACT

Voltage data acquired after probe signal transmitted through the organic film and reflected off the film surface as a function of 0.36 mW millimeter wave signal frequency in the range 110-160 GHz. Five different organic photovoltaic (OPV) materials and one 95:5 blend produced at 2 spin rates are used. These materials are a) fluorinated 2-alkyl-benzol[d] [1-3]triazole (FTAZ), a high hole-mobility polymer used for transistors and photovoltaics, b) diketopyrrolopyrrole (DPP3T), an acceptor polymer used in field-effect transistors (FET), c) Y5(PffBT4T-2OD) film that possesses remarkable temperature controllable morphology, d) a neat conjugated polymer P3HT, Poly(3-(hexylthiophene-2,5diyl) film that is used in optoelectronic devices and as a conductive binder for Li-ion batteries, e) phenyl-C61-butyric acid methyl ester (PCBM) films and its soluble derivatives used as n-type organic semiconductors, and f) excitonic photovoltaic material 95%:5% donor-acceptor blend P3HT:PCBM produced by 2 different spin rates. Measurement of direct-current (dc) transmitted and reflected power (RF voltage signal) are measured using a newly developed continuous wave (CW) D-waveguide band probe (110-160 GHz) apparatus named time-resolved millimeter wave conductivity (TR-mmWC) [1]. Transmission and first surface reflection voltages are captured by a zero-bias Schottky barrier diode (ZBD) and converted to relevant dc voltages. Original voltage signal datasets attached with this can be utilized for photovoltaic, dielectric property estimation, and other semiconductor physics applications. A manually collected dataset of transmission and reflection coefficient at incident probe power level ∼0.9 mW for 95:5 P3HT:PCBM films produced at 2 different spin rates, and one separately only for the neat P3HT film are also presented here in tabular form.

5.
Rev Sci Instrum ; 89(10): 104704, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399847

ABSTRACT

This article demonstrates a contactless, time-resolved, millimeter wave conductivity apparatus capable of measuring photoconductivity of a diverse range of materials. This cavity-less system determines the time-dependent magnitude of a sample's charge carrier density-mobility product by monitoring the response of a continuous, millimeter-wave probe beam following excitation of the sample by an ultrafast laser pulse. The probe beam is tunable from 110 GHz to 170 GHz and the sample response data can be obtained over the sub-nanosecond to millisecond time interval. This system has been tested on silicon wafers, S-I GaAs, perovskite thin films, SiO2-Ge(nc), and CdSxSe1-x nanowire samples. We demonstrate a minimum detectable photoconductance change of ∼1 µS, an estimated time resolution for conductance decay of ∼100 ps, and a dynamic range greater than 57 dB. The calibration constant of the system, needed for quantitative calculation of photoconductivity from experimental data, has been determined using silicon wafers. This system has several advantages over currently used microwave and terahertz techniques, such as facile tunability of probe frequency and substantially wider time range for study of decay kinetics, while maintaining an open sample environment that enables characterization of a wide range of sample sizes under controlled environmental conditions.

6.
Nanomaterials (Basel) ; 8(9)2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30205489

ABSTRACT

3D hybrid nanostructures connecting 1D carbon nanotubes (CNTs) with 2D graphene have attracted more and more attentions due to their excellent chemical, physical and electrical properties. In this study, we firstly report a novel and facile one-step process using template-directed chemical vapor deposition (CVD) to fabricate highly nitrogen doped three-dimensional (3D) N-doped carbon nanotubes/N-doped graphene architecture (N-CNTs/N-graphene). We used nickel foam as substrate, melamine as a single source for both carbon and nitrogen, respectively. The morphology and microstructure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, isothermal analyses, X-ray photoelectron microscopy and Raman spectra. The obtained 3D N-CNTs/N-graphene exhibits high graphitization, a regular 3D structure and excellent nitrogen doping and good mesoporosity.

7.
Materials (Basel) ; 11(6)2018 May 25.
Article in English | MEDLINE | ID: mdl-29799439

ABSTRACT

We report here the synthesis of metal oxide nanosheets (MONs) directly grown on stainless steel substrates by thermal oxidation in the presence of trace amounts of water. The morphology and microstructure of MONs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and atomic force microscopy (AFM). The composition of MONs was determined by the energy dispersive system and X-ray diffraction patterns. The results showed that the as-synthesized MONs were ultrathin, vertically aligned, and mostly transparent. They were polycrystalline and were composed primarily of Cr2O3 and (Fe, Mn)3O4. The optimal condition to synthesize the MONs with an optimal ultra-high surface atom ratio were determined by varying the temperature and time required for the growth of the MONs. It was found that the lateral size of MONs gradually increases as the temperature rises from 1000 to 1100 °C. An optimal temperature of 1100 °C is obtained in terms of the growth density, size and transparency degree growth morphology, and quality. The structure of MONs changes from two-dimensional to three-dimensional networks when the synthesis time is prolonged to more than 1 h.

8.
ACS Omega ; 3(6): 7096-7105, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-31458871

ABSTRACT

The effects of both graphene nanoplatelets and reduced graphene oxide as additives to the negative active material in valve-regulated lead-acid batteries for electric bikes were investigated. Low-temperature performance, charge acceptance, cycle performance, and water loss were investigated. The test results show that the low-temperature performance, charge acceptance, and large-current discharge performance of the batteries with graphene additives were significantly improved compared to the control battery, and the cycle life under 100% depth of discharge condition was extended by more than 52% from 250 to 380 cycles. Meanwhile, the amount of water loss from the batteries with graphene changed only slightly compared with the control cells. The excellent performance of the batteries can be ascribed to the graphene promoting the negative-plate charge and discharge processes and suppressing the growth of lead sulfate crystals.

9.
RSC Adv ; 8(22): 12157-12164, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-35539379

ABSTRACT

Integration of two-dimensional graphene and one-dimensional carbon nanotubes (CNTs) to create potentially useful 3D mesoscopic carbon structures with enhanced properties relative to the original materials is very desirable. Here, we report a novel and simple route using chemical vapor deposition (CVD) methods to fabricate bead-like nitrogen-doped CNT/graphene composites (NCNT/G) via a simple pyrolysis of the N-rich melamine in the presence of graphene oxide (GO) as a substrate using a Mn-Ni-Co ternary catalyst. We have characterized these structures by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, isothermal analyses, and X-ray photoelectron spectroscopy. The three dimensional NCNT/G hybrids have unique network structures, moderate graphitization, high specific surface area, good mesoporosity, and N doping, which makes them promising materials for applications in energy storage and conversion.

10.
J Am Chem Soc ; 139(19): 6629-6634, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28467066

ABSTRACT

Hyperpolarized 13C magnetic resonance spectroscopy (MRS) provides unprecedented opportunities to obtain clinical diagnostic information through in vivo monitoring of metabolic pathways. The continuing advancement of this field relies on the identification of molecular probes that can effectively interrogate pathways critical to disease. In this report, we describe the synthesis, development, and in vivo application of sodium [1-13C]-glycerate ([13C]-Glyc) as a novel probe for evaluating glycolysis using hyperpolarized 13C MRS. This agent was prepared by a concise synthetic route and formulated for dynamic nuclear polarization. [13C]-Glyc displayed a high level of polarization and long spin-lattice relaxation time-both of which are necessary for future clinical investigations. In vivo spectroscopic studies with hyperpolarized [13C]-Glyc in rat liver furnished metabolic products, [13C]-labeled pyruvate and lactate, originating from glycolysis. The levels of production and relative intensities of these metabolites were directly correlated with the induced glycolytic state (fasted versus fed groups). This work establishes hyperpolarized [13C]-Glyc as a novel agent for clinically relevant 13C MRS studies of energy metabolism and further provides opportunities for evaluating intracellular redox states in biochemical investigations.


Subject(s)
Glyceric Acids/metabolism , Glycolysis , Molecular Probes/metabolism , Sodium/metabolism , Animals , Carbon Isotopes , Glyceric Acids/chemistry , Male , Molecular Probes/chemistry , Molecular Structure , Rats , Rats, Wistar , Sodium/chemistry
11.
J Org Chem ; 81(1): 330-5, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26652145

ABSTRACT

A novel approach for the synthesis of monoarylamines from aryl halides is presented. This method employs an inexpensive, nontoxic metal source (copper) and incorporates a stable ammonia surrogate (α-amino acids), obviating the need for special experimental setup or handling of ammonia reagents. This process, which is proposed to proceed via an amination-oxidation sequence, selectively promotes the transformation of a range of aryl and heteroaryl iodides as well as bromides to the corresponding monoarylamines.

12.
J Biol Eng ; 7: 19, 2013.
Article in English | MEDLINE | ID: mdl-23965258

ABSTRACT

BACKGROUND: Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs' antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores. RESULTS AND DISCUSSION: The results showed that the treatment of 10 µg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease). CONCLUSIONS: The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis.

13.
J Nanosci Nanotechnol ; 11(6): 4708-16, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21770096

ABSTRACT

In this study, single-walled carbon nanotubes (SWCNTs) coupled with near infrared (NIR) laser treatment to enhance SWCNT's antimicrobial activity were studied. Salmonella, agram-negative pathogenic bacteria, was used as a model bacteria in this study. We found that NIR treatment (800 nm, 475 mW, for 20 min) to bacterial suspension with 50 microg/ml SWCNTs reduced the cell growth by approximately 55.5% compared with the cell sample with 50 microg/ml SWCNTs alone. Determined by the plating method, the viable cell number in the SWCNTs-NIR treated samples reduced by 2.2 log, while SWCNTs alone only had 0.7 log reduction. Imaging analysis of bacterial cells with and without NIR treatment correlated well with the growth and viable cell reduction measurement. We also found that the enhancement of SWCNTs' antimicrobial activity by NIR treatment was related to the NIR power, the NIR treatment time, and SWCNTs' concentration. The localized heating of SWCNTs under NIR treatment was the likely mechanism to enhance the antimicrobial efficiency of SWCNTs beyond its intrinsic antimicrobial activity. The results of this study suggested that SWCNTs-NIR treatment has the potential to be an effective antimicrobial method.


Subject(s)
Anti-Bacterial Agents/chemistry , Infrared Rays , Nanotubes, Carbon/chemistry , Salmonella/drug effects , Salmonella/radiation effects , Anti-Bacterial Agents/pharmacology , Hot Temperature , Lasers , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Salmonella/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...