Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Article in English | MEDLINE | ID: mdl-38682858

ABSTRACT

The orexin system is closely related to the pathogenesis of Alzheimer's disease (AD). Orexin-A aggravates cognitive dysfunction and increases amyloid ß (Aß) deposition in AD model mice, but studies of different dual orexin receptor (OXR) antagonists in AD have shown inconsistent results. Our previous study revealed that OX1R blockade aggravates cognitive deficits and pathological progression in 3xTg-AD mice, but the effects of OX2R and its potential mechanism in AD have not been reported. In the present study, OX2R was blocked by oral administration of the selective OX2R antagonist MK-1064, and the effects of OX2R blockade on cognitive dysfunction and neuropsychiatric symptoms in 3xTg-AD mice were evaluated via behavioral tests. Then, immunohistochemistry, western blotting and ELISA were used to detect Aß deposition, tau phosphorylation and neuroinflammation, and electrophysiological and wheel-running activity recording were recorded to observe hippocampal synaptic plasticity and circadian rhythm. The results showed that OX2R blockade ameliorated cognitive dysfunction, improved LTP depression, increased the expression of PSD-95, alleviated anxiety- and depression-like behaviors and circadian rhythm disturbances in 3xTg-AD mice, and reduced Aß pathology, tau phosphorylation and neuroinflammation in the brains of 3xTg-AD mice. These results indicated that chronic OX2R blockade exerts neuroprotective effects in 3xTg-AD mice by reducing AD pathology at least partly through improving circadian rhythm disturbance and the sleep-wake cycle and that OX2R might be a potential target for the prevention and treatment of AD; however, the potential mechanism by which OX2R exerts neuroprotective effects on AD needs to be further investigated.

2.
Metab Brain Dis ; 39(1): 129-146, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37823968

ABSTRACT

Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.


Subject(s)
Alzheimer Disease , Diet, Ketogenic , Humans , Alzheimer Disease/metabolism , Ketone Bodies/metabolism , Intermittent Fasting , Brain/metabolism , Ketones/metabolism
3.
Neuromolecular Med ; 25(4): 632-643, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37843792

ABSTRACT

Orexin and its receptors are closely related to the pathogenesis of Alzheimer's disease (AD). Although the expression of orexin system genes under physiological condition has circadian rhythm, the diurnal characteristics of orexin system genes, and its potential role in the pathogenesis in AD are unknown. In the present study, we hope to elucidate the diurnal characteristics of orexin system genes at the early stage of AD, and to investigate its potential role in the development of AD neuropathology. We firstly detected the mRNA levels of orexin system genes, AD risk genes and core clock genes (CCGs) in hypothalamus and hippocampus in 6-month-old male 3xTg-AD mice and C57BL/6J (wild type, WT) control mice, then analyzed diurnal expression profiles of all genes using JTK_CYCLE algorithm, and did the correlation analysis between expression of orexin system genes and AD risk genes or CCGs. In addition, the expression of ß-amyloid protein (Aß) and phosphorylated tau (p-tau) protein were measured. The results showed that the diurnal mRNA expression profiles of PPO, OX1R, OX2R, Bace2, Bmal1, Per1, Per2 and Cry1 in the hypothalamus, and gene expression of OX1R, OX2R, Bace1, Bmal1, Per1 and Cry2 in the hippocampus in 3xTg-AD mice were different from that in WT mice. Furthermore, there is positive correlation between orexin system genes and AD risk genes or CCGs in the brain in 3xTg-AD mice. In addition, the expression of Aß and p-tau in hippocampus in 3xTg-AD mice were significantly increased, and the expression of p-tau is higher in night than in day. These results indicate that the abnormal expression profiles of orexin system genes and its interaction with AD risk genes or CCGs might exert important role in the pathogenesis of AD, which will increase the expression of Aß and p-tau, and accelerate the development of AD.


Subject(s)
Alzheimer Disease , Orexins , Animals , Male , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , ARNTL Transcription Factors/metabolism , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Orexins/genetics , RNA, Messenger/genetics , tau Proteins/genetics , tau Proteins/metabolism
4.
Neuropharmacology ; 240: 109716, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37730113

ABSTRACT

Disorders of brain glucose metabolism is known to affect brain activity in neurodegenerative diseases including Alzheimer's disease (AD). Furthermore, recent evidence has shown an association between AD and type 2 diabetes. Numerous reports have found that glucagon-like peptide-1 (GLP-1) receptor agonists improve the cognitive behavior and pathological features in AD patients and animals, which may be related to the improvement of glucose metabolism in the brain. However, the mechanism by which GLP-1 agonists improve the brain glucose metabolism in AD patients remains unclear. In this study, we found that SIRT1 is closely related to expression of GLP-1R in hippocampus of 3xTg mice. Therefore, we used semaglutide, a novel GLP-1R agonist currently undergoing two phase 3 clinical trials in AD patients, to observe the effect of SIRT1 after semaglutide treatment in 3XTg mice and HT22 cells, and to explore the mechanism of SIRT1 in the glucose metabolism disorders of AD. The mice were injected with semaglutide on alternate days for 30 days, followed by behavioral experiments including open field test, new object recognition test, and Y-maze. The content of glucose in the brain was also measured by using 18FDG-PET-CT scans. We measured the expression of Aß and tau in the hippocampus, observed the expression of GLUT4 which is downstream of SIRT1, and tested the Glucose oxidase assay (GOD-POD) and Hexokinase (HK) in HT22 cells. Here, we found in the 3xTg mouse model of AD and in cultured HT22 mouse neurons that SIRT1 signaling is involved in the impairment of glucose metabolism in AD. Semaglutide can increased the expression levels of SIRT1 and GLUT4 in the hippocampus of 3xTg mice, accompanied by an improvement in learning and memory, decreased in Aß plaques and neurofibrillary tangles. In addition, we further demonstrated that semaglutide improved glucose metabolism in the brain of 3xTg mice in vitro, semaglutide promoted glycolysis and improved glycolytic disorders, and increased the membrane translocation of GLUT4 in cultured HT22 cells. These effects were blocked by the SIRT1 inhibitor (EX527). These findings indicate that semaglutide can regulate the expression of GLUT4 to mediate glucose transport through SIRT1, thereby improving glucose metabolism dysfunction in AD mice and cells. The present study suggests that SIRT1/GLUT4 signaling pathway may be an important mechanism for GLP-1R to promote glucose metabolism in the brain, providing a reliable strategy for effective therapy of AD.

6.
J Alzheimers Dis ; 94(4): 1477-1485, 2023.
Article in English | MEDLINE | ID: mdl-37393500

ABSTRACT

BACKGROUND: Most previous studies supported that the mammalian target of rapamycin (mTOR) is over-activated in Alzheimer's disease (AD) and exacerbates the development of AD. It is unclear whether the causal associations between the mTOR signaling-related protein and the risk for AD exist. OBJECTIVE: This study aims to investigate the causal effects of the mTOR signaling targets on AD. METHODS: We explored whether the risk of AD varied with genetically predicted AKT, RP-S6K, EIF4E-BP, eIF4E, eIF4A, and eIF4G circulating levels using a two-sample Mendelian randomization analysis. The summary data for targets of the mTOR signaling were acquired from published genome-wide association studies for the INTERVAL study. Genetic associations with AD were retrieved from the International Genomics of Alzheimer's Project. We utilized the inverse variance weighted as the primary approach to calculate the effect estimates. RESULTS: The elevated levels of AKT (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) and RP-S6K (OR = 0.910, 95% CI=0.840-0.986, p = 0.02) may decrease the AD risk. In contrast, the elevated eIF4E levels (OR = 1.805, 95% CI=1.002-1.174, p = 0.045) may genetically increase the AD risk. No statistical significance was identified for levels of EIF4-BP, eIF4A, and eIF4G with AD risk (p > 0.05). CONCLUSION: There was a causal relationship between the mTOR signaling and the risk for AD. Activating AKT and RP-S6K, or inhibiting eIF4E may be potentially beneficial to the prevention and treatment of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide/genetics , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases/genetics
7.
Gene ; 876: 147484, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37187245

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease that worsens with age. Long non-coding RNAs (lncRNAs) dysregulation and its associated competing endogenous RNA (ceRNA) network have a potential connection with the occurrence and development of AD. A total of 358 differentially expressed genes (DEGs) were screened via RNA sequencing, including 302 differentially expressed mRNAs (DEmRNAs) and 56 differential expressed lncRNAs (DElncRNAs). Anti-sense lncRNA is the main type of DElncRNA, which plays a major role in the cis and trans regulation. The constructed ceRNA network consisted of 4 lncRNAs (NEAT1, LINC00365, FBXL19-AS1, RAI1-AS1719) and 4 microRNAs (miRNAs) (HSA-Mir-27a-3p, HSA-Mir-20b-5p, HSA-Mir-17-5p, HSA-Mir-125b-5p), and 2 mRNAs (MKNK2, F3). Functional enrichment analysis revealed that DEmRNAs are involved in related biological functions of AD. The co-expressed DEmRNAs (DNAH11, HGFAC, TJP3, TAC1, SPTSSB, SOWAHB, RGS4, ADCYAP1) of humans and mice were screened and verified by real-time quantitative polymerase chain reaction (qRT-PCR). In this study, we analyzed the expression profile of human AD-related lncRNA genes, constructed a ceRNA network, and performed functional enrichment analysis of DEmRNAs between human and mice. The obtained gene regulatory networks and target genes can be used to further analyze AD-related pathological mechanisms to optimize AD diagnosis and treatment.


Subject(s)
Alzheimer Disease , MicroRNAs , Neurodegenerative Diseases , RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Gene Regulatory Networks , Zonula Occludens Proteins/genetics
8.
CNS Neurosci Ther ; 29(11): 3378-3390, 2023 11.
Article in English | MEDLINE | ID: mdl-37208955

ABSTRACT

AIMS: Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS: Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS: DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS: We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.


Subject(s)
Brain Injuries, Traumatic , Carbon Dioxide , Interferon Regulatory Factor-7 , Animals , Mice , Brain Injuries, Traumatic/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/therapeutic use , Disease Models, Animal , GAP-43 Protein/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/therapeutic use , Synaptophysin/metabolism , Synaptophysin/therapeutic use
9.
Neurobiol Aging ; 124: 71-84, 2023 04.
Article in English | MEDLINE | ID: mdl-36758468

ABSTRACT

Dementia is the main clinical feature of Alzheimer's disease (AD). Orexin has recently been linked to AD pathogenesis, and exogenous orexin-A (OXA) aggravates spatial memory impairment in APP/PS1 mice. However, the effects of OXA on other types of cognitive deficits, especially in 3xTg-AD mice exhibiting both plaque and tangle pathologies, have not been reported. Furthermore, the potential electrophysiological mechanism by which OXA affects cognitive deficits and the molecular mechanism by which OXA increases amyloid ß (Aß) levels are unknown. In the present study, the effects of OXA on cognitive functions, synaptic plasticity, Aß levels, tau hyperphosphorylation, BACE1 and NEP expression, and circadian locomotor rhythm were evaluated. The results showed that OXA aggravated memory impairments and circadian rhythm disturbance, exacerbated hippocampal LTP depression, and increased Aß and tau pathologies in 3xTg-AD mice by affecting BACE1 and NEP expression. These results indicated that OXA aggravates cognitive deficits and hippocampal synaptic plasticity impairment in 3xTg-AD mice by increasing Aß production and decreasing Aß clearance through disruption of the circadian rhythm and sleep-wake cycle.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Orexins , Mice, Transgenic , Aspartic Acid Endopeptidases/metabolism , Neuronal Plasticity , Memory Disorders/metabolism , Cognition , Disease Models, Animal , Amyloid beta-Protein Precursor/metabolism , tau Proteins , Mice, Inbred C57BL
10.
Behav Brain Res ; 438: 114171, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36280008

ABSTRACT

Cognitive dysfunction is the main clinical manifestation of Alzheimer's disease (AD). Previous research found that elevated orexin level in the cerebrospinal fluid was closely related to the course of AD, and orexin-A treatment could increase amyloid ß protein (Aß) deposition and aggravate spatial memory impairment in APP/PS1 mice. Furthermore, recent research found that dual orexin receptor (OXR) antagonist might affect Aß level and cognitive dysfunction in AD, but the effects of OX1R or OX2R alone is unreported until now. Considering that OX1R is highly expressed in the hippocampus and plays important roles in learning and memory, the effects of OX1R in AD cognitive dysfunction and its possible mechanism should be investigated. In the present study, selective OX1R antagonist SB-334867 was used to block OX1R. Then, different behavioral tests were performed to observe the effects of OX1R blockade on cognitive function of 3xTg-AD mice exhibited both Aß and tau pathology, in vivo electrophysiological recording and western blot were used to investigate the potential mechanism. The results showed that chronic OX1R blockade aggravated the impairments of short-term working memory, long-term spatial memory and synaptic plasticity in 9-month-old female 3xTg-AD mice, increased levels of soluble Aß oligomers and p-tau, and decreased PSD-95 expression in the hippocampus of 3xTg-AD mice. These results indicate that the detrimental effects of SB-334867 on cognitive behaviors in 3xTg-AD mice are closely related to the decrease of PSD-95 and depression of in vivo long-term potentiation (LTP) caused by increased Aß oligomers and p-tau.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Animals , Female , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Orexins/metabolism , Mice, Transgenic , Disease Models, Animal , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Hippocampus/metabolism , Orexin Receptor Antagonists/pharmacology , tau Proteins/metabolism , Amyloid beta-Protein Precursor/metabolism
11.
Neural Regen Res ; 18(4): 727-733, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36204828

ABSTRACT

Agomelatine is a selective agonist of melatonin receptor 1A/melatonin receptor 1B (MT1/MT2) and antagonist of 5-hydroxytryptamine 2C receptors. It is used clinically to treat major depressive episodes in adults. The pro-chronobiological activity of agomelatine reconstructs sleep-wake rhythms and normalizes circadian disturbances via its agonistic effect of melatonin receptor 1A/melatonin receptor 1B, which work simultaneously to counteract depression and anxiety disorder. Moreover, by antagonizing neocortical postsynaptic 5-hydroxytryptamine 2C receptors, agomelatine enhances the release of dopamine and noradrenaline in the prefrontal cortex, increases the activity of dopamine and noradrenaline, and thereby reduces depression and anxiety disorder. The combination of these two effects means that agomelatine exhibits a unique pharmacological role in the treatment of depression, anxiety, and disturbance of the circadian rhythm. Emotion and sleep are closely related to memory and cognitive function. Memory disorder is defined as any forms of memory abnormality, which is typically evident in a broad range of neurodegenerative diseases, including Alzheimer's disease. Memory impairment and cognitive impairment are common symptoms of neurodegenerative and psychiatric diseases. Therefore, whether agomelatine can improve memory and cognitive behaviors if used for alleviating depression and circadian-rhythm sleep disorders has become a research "hotspot". This review presents the latest findings on the effects of agomelatine in the treatment of psychologic and circadian-rhythm sleep disorders in clinical trials and animal experiments. Our review evaluates recent studies on treatment of memory impairment and cognitive impairment in neurodegenerative and psychiatric diseases.

13.
Neural Regen Res ; 17(9): 2072-2078, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35142699

ABSTRACT

In our previous studies, we have shown that (D-Ser2) oxyntomodulin (Oxm), a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide, protects hippocampal neurons against Aß1-42-induced cytotoxicity, and stabilizes the calcium homeostasis and mitochondrial membrane potential of hippocampal neurons. Additionally, we have demonstrated that (D-Ser2) Oxm improves cognitive decline and reduces the deposition of amyloid-beta in Alzheimer's disease model mice. However, the protective mechanism remains unclear. In this study, we showed that 2 weeks of intraperitoneal administration of (D-Ser2) Oxm ameliorated the working memory and fear memory impairments of 9-month-old 3×Tg Alzheimer's disease model mice. In addition, electrophysiological data recorded by a wireless multichannel neural recording system implanted in the hippocampal CA1 region showed that (D-Ser2) Oxm increased the power of the theta rhythm. In addition, (D-Ser2) Oxm treatment greatly increased the expression level of synaptic-associated proteins SYP and PSD-95 and increased the number of dendritic spines in 3×Tg Alzheimer's disease model mice. These findings suggest that (D-Ser2) Oxm improves the cognitive function of Alzheimer's disease transgenic mice by recovering hippocampal synaptic function and theta rhythm.

14.
J Alzheimers Dis ; 85(1): 343-357, 2022.
Article in English | MEDLINE | ID: mdl-34806605

ABSTRACT

BACKGROUND: Cognitive deficit is mainly clinical characteristic of Alzheimer's disease (AD). Recent reports showed adiponectin and its analogues could reverse cognitive impairments, lower amyloid-ß protein (Aß) deposition, and exert anti-inflammatory effects in different APP/PS1 AD model mice mainly exhibiting amyloid plaque pathology. However, the potential in vivo electrophysiological mechanism of adiponectin protecting against cognitive deficits in AD and the neuroprotective effects of adiponectin on 3xTg-AD mice including both plaque and tangle pathology are still unclear. OBJECTIVE: To observe the effects of adiponectin treatment on cognitive deficits in 3xTg-AD mice, investigate its potential in vivo electrophysiological mechanism, and testify its anti-inflammatory effects. METHODS: Barnes maze test, Morris water maze test, and fear conditioning test were used to evaluate the memory-ameliorating effects of adiponectin on 3xTg-AD mice. In vivo hippocampal electrophysiological recording was used to observe the change of basic synaptic transmission, long-term potentiation, and long-term depression. Immunohistochemistry staining and western blot were used to observe the activation of microglia and astroglia, and the expression levels of proinflammatory factors and anti-inflammtory factor IL-10. RESULTS: Adiponectin treatment could alleviate spatial memory and conditioned fear memory deficits observed in 3xTg-AD mice, improve in vivo LTP depression and LTD facilitation, inhibit overactivation of microglia and astroglia, decrease the expression of proinflammatory factors NF- κB and IL-1ß, and increase the expression level of IL-10 in the hippocampus of 3xTg-AD mice. CONCLUSION: Adiponectin could ameliorate cognitive deficits in 3xTg-AD mice through improving in vivo synaptic plasticity impairments and alleviating neuroinflammation in the hippocampus of 3xTg-AD mice.


Subject(s)
Adiponectin/pharmacology , Alzheimer Disease/drug therapy , Cognitive Dysfunction/drug therapy , Memory Disorders/drug therapy , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Animals , Behavior, Animal/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Long-Term Potentiation/drug effects , Male , Maze Learning/drug effects , Memory Disorders/etiology , Memory Disorders/pathology , Mice , Mice, Transgenic , Spatial Memory/drug effects , Synaptic Transmission/drug effects
15.
J Alzheimers Dis ; 83(2): 799-818, 2021.
Article in English | MEDLINE | ID: mdl-34366339

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE: To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS: A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS: DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION: DA4-JC is a promising drug for the treatment of AD.


Subject(s)
Alzheimer Disease/pathology , Cognitive Dysfunction/prevention & control , Diabetes Mellitus, Type 2/complications , Disks Large Homolog 4 Protein/genetics , Glucagon-Like Peptide 1/agonists , Long-Term Potentiation/drug effects , Neuroprotective Agents/pharmacology , Animals , Disease Models, Animal , Female , Hippocampus/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Synapses/metabolism
16.
Sheng Li Xue Bao ; 73(3): 471-481, 2021 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-34230948

ABSTRACT

Sleep exerts important functions in the regulation of cognition and emotion. Recent studies have found that sleep disorder is one of the important risk factors for Alzheimer's disease (AD), but the effects of chronic sleep deprivation on the cognitive functions of AD model mice and its possible mechanism are still unclear. In the present study, 8-month-old male APP/PS1/tau triple transgenic AD model (3xTg-AD) mice and wild type (WT) mice (n = 8 for each group) were subjected to chronic sleep deprivation by using the modified multiple platform method, with 20 h of sleep deprivation each day for 21 days. Then, open field test, elevated plus maze test, sugar water preference test, object recognition test, Y maze test and conditioned fear memory test were performed to evaluate anxiety- and depression-like behaviors, and multiple cognitive functions. In addition, the immunohistochemistry technique was used to observe pathological characteristics in the hippocampus of mice. The results showed that: (1) Chronic sleep deprivation did not affect anxiety- (P = 0.539) and depression-like behaviors (P = 0.874) in 3xTg-AD mice; (2) Chronic sleep deprivation exacerbated the impairments of object recognition memory (P < 0.001), working memory (P = 0.002) and the conditioned fear memory (P = 0.039) in 3xTg-AD mice; (3) Chronic sleep deprivation increased amyloid ß (Aß) deposition (P < 0.001) and microglial activation (P < 0.001) in the hippocampus of 3xTg-AD mice, without inducing abnormal tau phosphorylation and neurofibrillary tangles. These results indicate that chronic sleep deprivation exacerbates the impairments of recognition memory, working memory and conditioned fear memory in 3xTg-AD mice by aggravating Aß deposition and the excessive activation of microglia in the hippocampus.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Animals , Cognition , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1 , Sleep Deprivation , tau Proteins
17.
Behav Brain Res ; 412: 113400, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34087256

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits. Sleep deprivation (SD) could lead to memory deficits, and it was a candidate risk factor for AD. However, the effects of chronic SD on the cognitive functions of AD model mice and its possible mechanism are still unclear. In the present study, 8-month-old male APP/PS1 transgenic mice and wild type (WT) littermates were subjected to chronic SD by using the modified multiple platform method (MMPM), with 20 h of SD each day for 21 days. Then, the effects of chronic SD on cognitive functions in APP/PS1 mice were tested by using behavioral tests, the potential mechanisms were investigated by in vivo electrophysiological recording, western blot and immunochemistry. The results showed that chronic SD obviously aggravated the cognitive impairments, exacerbated in vivo hippocampal long-term potentiation (LTP) suppression, reduced the expression level of PSD95, increased amyloid-ß (Aß) protein deposition and overactivated microglia in the hippocampus of APP/PS1 mice. These results indicate that chronic SD exacerbates the cognitive deficits in APP/PS1 mice by accelerating the development of AD pathologies, reducing the expression of PSD95 and aggravating the LTP suppression in hippocampus. At the same time, chronic SD also impaired cognitive functions and synaptic plasticity in WT mice through down-regulating the level of PSD95 and activating microglia. These findings further clarify the electrophysiological and molecular mechanisms of exacerbated cognitive deficits in AD caused by chronic SD.


Subject(s)
Cognition/physiology , Neuronal Plasticity/physiology , Sleep Deprivation/physiopathology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cognition Disorders/etiology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Male , Memory Disorders/pathology , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Sleep/physiology
18.
J Alzheimers Dis ; 80(2): 695-713, 2021.
Article in English | MEDLINE | ID: mdl-33579843

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE: The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS: Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aß plaques and neuroinflammation in the brain. IL-1ß, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS: DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aß deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1ß and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION: DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.


Subject(s)
Cognitive Dysfunction/drug therapy , Gastric Inhibitory Polypeptide/pharmacology , Long-Term Potentiation/drug effects , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Cognition/drug effects , Cognitive Dysfunction/pathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Mice , Mice, Transgenic , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Plaque, Amyloid/pathology
19.
Alzheimers Res Ther ; 13(1): 7, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397436

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is an intractable neurodegenerative disorder in the elderly population, currently lacking a cure. Trichostatin A (TSA), a histone deacetylase inhibitor, showed some neuroprotective roles, but its pathology-improvement effects in AD are still uncertain, and the underlying mechanisms remain to be elucidated. The present study aims to examine the anti-AD effects of TSA, particularly investigating its underlying cellular and molecular mechanisms. METHODS: Novel object recognition and Morris water maze tests were used to evaluate the memory-ameliorating effects of TSA in APP/PS1 transgenic mice. Immunofluorescence, Western blotting, Simoa assay, and transmission electron microscopy were utilized to examine the pathology-improvement effects of TSA. Microglial activity was assessed by Western blotting and transwell migration assay. Protein-protein interactions were analyzed by co-immunoprecipitation and LC-MS/MS. RESULTS: TSA treatment not only reduced amyloid ß (Aß) plaques and soluble Aß oligomers in the brain, but also effectively improved learning and memory behaviors of APP/PS1 mice. In vitro study suggested that the improvement of Aß pathology by TSA was attributed to the enhancement of Aß clearance, mainly by the phagocytosis of microglia, and the endocytosis and transport of microvascular endothelial cells. Notably, a meaningful discovery in the study was that TSA dramatically upregulated the expression level of albumin in cell culture, by which TSA inhibited Aß aggregation and promoted the phagocytosis of Aß oligomers. CONCLUSIONS: These findings provide a new insight into the pathogenesis of AD and suggest TSA as a novel promising candidate for the AD treatment.


Subject(s)
Alzheimer Disease , Aged , Albumins , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Animals , Chromatography, Liquid , Cognition , Disease Models, Animal , Endothelial Cells , Humans , Hydroxamic Acids , Mice , Mice, Transgenic , Presenilin-1/genetics , Tandem Mass Spectrometry
20.
Brain Res Bull ; 164: 146-156, 2020 11.
Article in English | MEDLINE | ID: mdl-32858129

ABSTRACT

Accumulating evidence suggests that chronic metformin posttreatment offers potent neuroreparative effects against acute brain injury. However, in previous studies, metformin was not initially administered beyond 24 h postinjury, and the effects of delayed metformin treatment in traumatic brain injury (TBI) and other types of acute brain injury and the related mechanisms are unclear. To test this, male C57BL/6 mice received once daily metformin treatment (20, 50 or 100 mg/kg/d, i.p.) at day 1-14, day 1-2, day 1-10, day 3-10, day 5-12 or day 5-28 after cryogenic TBI (cTBI). The results showed that 100 mg/kg/d metformin administered at day 1-14 postinjury significantly promoted motor functional recovery in the beam walking and gait tests and reduced the infarct volume. Metformin (100 mg/kg/d) administered at day 1-10 or day 3-10 but not day 1-2 or day 5-12 after cTBI significantly improved motor functional outcomes at day 7 and 14, and reduced the infarct volume at day 14. Interestingly, the therapeutic time window was further expanded when the duration of metformin treatment starting at day 5 postinjury was extended to 2 weeks. Furthermore, compared with cTBI, the administration of metformin at day 3-10 or day 5-28 after cTBI significantly elevated the expression of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and growth associated protein 43 (an axonal regeneration marker) and the number of vascular branch points and decreased the area of glial scar and the number of amoeboid microglia in the peri-infarct area at day 14 or 28 postinjury. The above beneficial effects of metformin were blocked by the intracerebroventricular injection of the AMPK inhibitor compound C (40 µg/mouse/d). Our data provide the first evidence that metformin has a wide therapeutic time window for at least 5 days after cTBI, during which it can improve functional recovery by promoting tissue repair and inhibiting glial scar formation and microglial activation in a central AMPK-dependent manner.


Subject(s)
Adenylate Kinase/metabolism , Brain Injuries, Traumatic/drug therapy , Brain/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Motor Skills/drug effects , Neuroprotective Agents/therapeutic use , Recovery of Function/drug effects , Animals , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Hypoglycemic Agents/pharmacology , Male , Metformin/pharmacology , Mice , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...