Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Angew Chem Int Ed Engl ; 63(15): e202400012, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38340327

ABSTRACT

Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.

2.
Talanta ; 271: 125678, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38277968

ABSTRACT

The detection of foodborne pathogens is crucial for ensuring the maintenance of food safety. In the present study, a portable CRISPR-Cas12a triggered photothermal biosensor integrating branch hybrid chain reaction (bHCR) and DNA metallization strategy for sensitive and visual detection of foodborne pathogens was proposed. The sheared probes were utilized to block the locker probes, which enabled preventing the assembly of bHCR in the absence of target bacteria, while target bacteria can activate the cleavage of sheared probes through CRISPR-Cas12a. Therefore, the locker probes functioned as initiating chains, triggering the formation of the branching double-stranded DNA consisting of H1, H2, and H3. The silver particles, which were in situ deposited on the DNA structure, functioned as a signal factor for conducting photothermal detection. Staphylococcus aureus and Listeria monocytogenes were selected as the foodborne pathogens to verify the analytical performance of this CRISPR-Cas12a triggered photothermal sensor platform. The sensor exhibited a sensitive detection with a low detection limit of 1 CFU/mL, while the concentration ranged from 100 to 108 CFU/mL. Furthermore, this method could efficiently detect target bacteria in multiple food samples. The findings demonstrate that this strategy can serve as a valuable reference for the development of a portable platform enabling quantitative analysis, visualization, and highly sensitive detection of foodborne bacteria.


Subject(s)
Biosensing Techniques , Listeria monocytogenes , Staphylococcal Infections , Humans , Listeria monocytogenes/genetics , Staphylococcus aureus/genetics , CRISPR-Cas Systems , DNA
3.
J Mater Chem B ; 11(47): 11217-11221, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37843833

ABSTRACT

A polymeric engineering design principle is proposed for the construction of small-sized (∼20 nm) NIR-II AIEgen-doped nanodots (AIEdots) with high brightness and prolonged circulation time in blood vessels. With the utilization of the as-designed NIR-II AIEdots, the successful achievement of high-resolution NIR-II fluorescence imaging of tumor vessels and precise detection of abdominal metastases of ovarian cancer has been attained.


Subject(s)
Fluorescent Dyes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Optical Imaging , Polymers
4.
Adv Mater ; 35(44): e2305472, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37437082

ABSTRACT

Thermochromic fluorescent materials (TFMs) exhibit great potential in information encryption applications but are limited by low thermosensitivity, poor color tunability, and a wide temperature-responsive range. Herein, a novel strategy for constructing highly sensitive TFMs with tunable emission (450-650 nm) toward multilevel information encryption is proposed, which employs polarity-sensitive fluorophores with donor-acceptor-donor (D-A-D) type structures as emitters and long-chain alkanes as thermosensitive loading matrixes. The structure-function relationships between the performance of TFMs and the structures of both fluorescent emitters and phase-change molecules are systematically studied. Benefiting from the above design, the obtained TFMs exhibit over 9500-fold fluorescence enhancement toward the temperature change, as well as ultrahigh relative temperature sensitivity up to 80% K-1 , which are first confirmed. Thanks to the superior transducing performance, the above-prepared TFMs can be further developed as information-storage platforms within a relatively narrow interval of temperature variation, including temperature-dominated multicolored information display and multilevel information encryption. This work will not only provide a novel perspective for designing superior TFMs for information encryption but also bring inspiration to the design and preparation of other response-switching-type fluorescent probes with ultrahigh conversion efficiency.

5.
Small ; 19(36): e2301050, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37162490

ABSTRACT

Developing effective catalysts to degrade chemical warfare agents is of great significance. Herein, a mesoporous MIL-101(Cr) composite material dangled with porphyrin molecules (denote as TCPP@MIL-101(Cr), TCPP = tetra(4-carboxyphenyl)porphyrin) is reported, which can be used as a heterogeneous photocatalyst for detoxification of mustard gas simulants 2-chloroethyl ethyl sulfide (CEES) to 2-chloroethyl ethyl sulfoxide (CEESO) with a half-life of 1 min. The catalytic performance of TCPP@MIL-101(Cr) is comparable to that of homogeneous molecular porphyrin. Mechanistic studies reveal that both 1 O2 and O2 •- are efficiently generated and play vital roles in the oxidation reaction. Gold nanoparticles (AuNPs) are attached to the TCPP@MIL-101(Cr) to further enhance the catalytic activity with a benchmark half-life of 45 s, which is the fastest record so far. A medical mask loaded TCPP@MIL-101(Cr) is fabricated for practical applications, which can selectively photoxidize CEES to CEESO under sunlight and air atmosphere, exhibiting the best degradation performance among the reported fabric-like composite materials.

6.
Biosens Bioelectron ; 222: 114927, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36525707

ABSTRACT

Aß oligomers have been widely accepted as significant biomarkers for Alzheimer's disease (AD) detection, monitoring, and therapy since they are highly correlated with AD development. In this work, an electrochemical array-based sensing platform was successfully built using a group of functionalized graphene with different physicochemical features. Since the electro-insulated Aß peptide species severely interfered with the electron transport on the electrode surface, the presence of Aß led to a significant change in the electrochemical impedance signal. The resulting variety of the impedance was then classified and processed by linear discriminant analysis. The constructed sensing platform can discriminate different Aß forms, the mixture of various Aß forms, and different ratios of Aß42 to Aß40 with 100% accuracy by only the combination of dual probes. Furthermore, it also exhibited excellent performance for screening Aß inhibitors and metal chelators. The strategy utilizes the infinitesimal general discrepancy instead of specific biomarker recognition, exhibiting the advantage of no requirement to know the exact information about the specific ligand and receptor in advance, which is promising to be widened for the other biosensing detection fields.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Graphite , Humans , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/chemistry , Biomarkers , Peptide Fragments , Electrochemical Techniques
7.
Biosensors (Basel) ; 12(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36354498

ABSTRACT

An electrochemical-DNA (E-DNA) sensor was constructed by using DNA metallization to produce an electrochemical signal reporter in situ and hybridization chain reaction (HCR) as signal amplification strategy. The cyclic voltammetry (CV) technique was used to characterize the electrochemical solid-state Ag/AgCl process. Moreover, the enzyme cleavage technique was introduced to reduce background signals and further improve recognition accuracy. On the basis of these techniques, the as-prepared E-DNA sensor exhibited superior sensing performance for trace ctDNA analysis with a detection range of 0.5 fM to 10 pM and a detection limit of 7 aM. The proposed E-DNA sensor also displayed excellent selectivity, satisfied repeatability and stability, and had good recovery, all of which supports its potential applications for future clinical sample analysis.


Subject(s)
Biosensing Techniques , Circulating Tumor DNA , Biosensing Techniques/methods , Limit of Detection , Nucleic Acid Hybridization/methods , Nucleic Acid Amplification Techniques/methods , DNA/chemistry , Electrochemical Techniques/methods
8.
J Hazard Mater ; 436: 129210, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739732

ABSTRACT

The biofilm resistance of microorganisms has severe economic and environmental implications, especially the contamination of facilities associated with human life, including medical implants, air-conditioning systems, water supply systems, and food-processing equipment, resulting in the prevalence of infectious diseases. Once bacteria form biofilms, their antibiotic resistance can increase by 10-1,000-fold, posing a great challenge to the treatment of related diseases. In order to overcome the contamination of bacterial biofilm, destroying the biofilm's matrix so as to solve the penetration depth dilemma of antibacterial agents is the most effective way. Here, a magnetically controlled multifunctional micromotor was developed by using H2O2 as the fuel and MnO2 as the catalyst to treat bacterial biofilm infection. In the presence of H2O2, the as-prepared motors could be self-propelled by the generated oxygen microbubbles. Thereby, the remotely controlled motors could drill into the EPS of biofilm and disrupt them completely with the help of bubbles. Finally, the generated highly toxic •OH could efficiently kill the unprotected bacteria. This strategy combined the mechanical damage, highly toxic •OH, and precise magnetic guidance in one system, which could effectively eliminate biologically infectious fouling in microchannels within 10 min, possessing a wide range of practical application prospects especially in large scale and complex infection sites.


Subject(s)
Hydrogen Peroxide , Manganese Compounds , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Humans , Hydrogen Peroxide/pharmacology , Manganese Compounds/pharmacology , Oxides
9.
Anal Chem ; 94(19): 7115-7122, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35500042

ABSTRACT

In this work, a novel methodology to design bifunctional ECL-luminophores with self-enhanced and TSA-amplified characteristics was proposed for improving the sensing performance of ECL-immunosensor toward trace cytokine analysis. Thanks to the qualitative- and quantitative- dual signal amplification technique, the as-prepared ECL biosensor demonstrated excellent detection performance. By analyzing the prospective cytokine biomarkers (IL-6), the ECL immunosensor exhibited a broad examination range with quite low detection limit and quite high selectivity, which was far superior to commercial ELISA kits and ever reported works. In particular, the novel ECL nanoprobe developed here could also be applied to monitor other immune toxicities or disease-related cytokines by using the respective antibodies corresponding to these targets. Moreover, the concept and construction strategy of self-amplified ECL-luminophores presented here could be further extended to design a series of Pdots-derived multicolored ECL probes to meet the needs of multipathway detection applications.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Cytokines , Electrochemical Techniques , Immunoassay/methods , Limit of Detection , Luminescent Measurements/methods , Prospective Studies
10.
Anal Chem ; 94(6): 2901-2911, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34989555

ABSTRACT

Elucidating the intrinsic relationship between mitochondrial pH (pHm) fluctuation and lipid droplets (LDs) formation is vital in cell physiology. The development of small-molecular fluorescent probes for discrimination and simultaneous visualization of pHm fluctuation toward LDs has not yet been reported. In this work, utilizing pH-driven polarity-reversible hemicyanine and rhodamine derivatives, a multifunctional fluorescent probe is developed for selectively identifying mitochondria and LDs under specific pH values via dual-emission channels. This rapid-response probe, Hcy-Rh, has two distinct chemical structures under acidic and alkaline circumstances. In acidic conditions, Hcy-Rh exhibits good hydrophilicity that can target mitochondria and display an intense red fluorescence. Conversely, the probe becomes lipophilic under weakly alkaline conditions and targets LDs, showing a strong blue emission. In this manner, Hcy-Rh can selectively label mitochondria and LDs, exhibiting red and blue fluorescence, respectively. Moreover, this ratiometric probe is applied to map pHm changes in living cells under the stimulus with FCCP, NAC, and H2O2. The interplay of LD-mitochondria under oleic acid treatment and starvation-induced autophagy has been studied using this probe at different pH values. In a word, Hcy-Rh is a potential candidate for further exploring mitochondria-LD interaction mechanisms under pHm fluctuation. Moreover, the polarity-dependent strategy is valuable for designing other functional biological probes in imaging multiple organelles.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Hydrogen Peroxide/analysis , Hydrogen-Ion Concentration , Lipid Droplets/metabolism , Mitochondria/chemistry
11.
J Mater Chem B ; 10(5): 700-706, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35029262

ABSTRACT

The development of a sensitive cytosensor is beneficial for the early diagnosis and treatment of cancer. Herein, highly sensitive cytosensing was achieved by applying triple signal amplification strategies with Fe3O4@Au nanozymes and DNAzyme hybrids as electrochemical nanoprobes and toluidine blue (Tb) as the electron transfer medium. The Fe3O4@Au nanocomposites not only acted as nanozymes with excellent catalytic performance towards H2O2 reduction but also served as promising scaffolds to carry massive electroactive substances and DNA probes. The dual-functional DNA probes were designed with the sequence of hemin/G-quadruplex to serve as the DNAzyme and the sequence of aptamer to recognize cancer cells. Furthermore, Tb was also conjugated to the surface of the Fe3O4@Au nanohybrids, working as the electron transport medium to magnify the electrochemical response. With the above design, the Fe3O4@Au nanozymes and hemin/G-quadruplex DNAzyme efficiently co-catalyzed the reduction of H2O2 to accelerate the electron transfer of Tb, which realized triple signal amplification and finally improved the performance of the electrochemical cytosensor. The proposed cytosensor achieved a sensitive detection of HepG2 cells with a low detection limit of 20 cells mL-1, and could be potentially used as an effective analysis tool in early cancer diagnosis in the future.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Aptamers, Nucleotide/chemistry , DNA Probes , DNA, Catalytic/chemistry , Electrochemical Techniques , Hemin/chemistry , Hydrogen Peroxide/chemistry
12.
Chem Sci ; 14(1): 113-120, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36605751

ABSTRACT

AIEgen doped fluorescent nanodots (AIEdots) have attracted lots of attention, due to their superior characteristics as fluorescent probes, such as excellent photostability, large Stokes shift, high brightness and tunable emission. Unfortunately, most of the currently available AIEdots exhibit broad emission bandwidth, which limits their applications in multiplexed fluorescence imaging and detection. In this work, the strategy of designing and fabricating narrow emissive AIEdots (NE-AIEdots) with tunable wavelengths was presented by constructing a light-harvesting system with high energy transfer efficiency. Efficient intra-particle energy transfer from highly doped AIEgens, serving as the light-harvesting antenna, to the lightly doped narrow emissive fluorophore, resulted in high brightness and narrow emission. The emission band of NE-AIEdots with the full-width-at-half-maximum varied from 18 to 36 nm was 3-6.3 times narrower than that of traditional AIEdots. The single-particle brightness of NE-AIEdots was over 5-times that of commercial quantum dots under the same excitation and collection conditions. Taking advantage of the superior performance of these NE-AIEdots, multiplexed fluorescence imaging of lymph nodes in living mice was realized, which supported the future applications of NE-AIEdots for in vivo multiplexed labeling and clinical surgery.

13.
J Mater Chem B ; 9(36): 7347-7370, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34382629

ABSTRACT

Photodynamic therapy (PDT) is an approved and promising treatment approach that utilizes a photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS) through irradiation to achieve tumor noninvasive therapy. However, the limited singlet oxygen generation, the nonspecific uptake of PS in normal cells, and tumor hypoxia have become major challenges in conventional PDT, impeding its development and further clinical application. This review summarizes an overview of recent advances for the enhanced PDT. The development of PDT with innovative strategies, including molecular engineering and heavy atom-free photosensitizers is presented and future directions in this promising field are also provided. This review aims to highlight the recent advances in PDT and discuss the potential strategies that show promise in overcoming the challenges of PDT.


Subject(s)
Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Fluorescence Resonance Energy Transfer , Humans , Light , Metal Nanoparticles/chemistry , Mitochondria/metabolism , Photochemotherapy , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Tumor Microenvironment
14.
ACS Appl Mater Interfaces ; 13(31): 37102-37110, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34333980

ABSTRACT

The exploration of highly efficient materials for the degradation of chemical warfare agents has been a longstanding task for preventing human exposure. Herein, we report a series of metal-organic frameworks (MOFs) M-TCPP-La based on metallo-tetra(4-carboxyphenyl)porphyrin and LaIII, which were applied to selectively oxidize 2-chloroethyl ethyl sulfide (CEES, a sulfur mustard simulant) as heterogeneous photocatalysts. After irradiation from a commercial blue light-emitting diode (LED), both superoxide ion and singlet oxygen were generated by M-TCPP-La and involved in selective oxidization of CEES to 2-chloroethyl ethyl sulfoxide (CEESO). Notably, a very short half lifetime (2.5 min) was achieved using Fe-TCPP-La as the photocatalyst. In comparison to currently utilizing singlet oxygen and hydrogen peroxide as oxidizing agents, this work employing both singlet oxygen and superoxide ion represents a new and effective strategy of detoxification of mustard gas.

15.
J Mater Chem B ; 9(19): 4002-4005, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33904569

ABSTRACT

Hemoglobin-functionalized HKUST-1 as an artificial oxygen carrier has been developed. The new oxygen carrier has excellent oxygen loading capacity and good chemical durability. The sustained electrochemical responses toward H2O2 and O2 make this new material an ideal candidate as a promising artificial blood substitute.


Subject(s)
Blood Substitutes/chemistry , Hemoglobins/chemistry , Metal-Organic Frameworks/chemistry , Oxygen/chemistry , Electrochemical Techniques , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Oxygen/metabolism
16.
Mikrochim Acta ; 188(5): 169, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33891176

ABSTRACT

Sensitive and accurate detection of DNA methyltransferase (MTase) is conducive to the understanding of the fundamental biological processes related to DNA methylation, clinical disease diagnosis, and drug discovery. Herein, a new fluorescence transducer based on Förster resonance energy transfer (FRET) between the donor upconversion nanoparticles (UCNPs) and the efficient acceptor gold nanorods (AuNRs) for MTase activity analysis and its inhibitor screening is presented. A double-strand DNA linker between UCNPs and AuNRs could be digested by restriction endonuclease HhaI, preventing the FRET process and recovering the upconversion luminescence (UCL) intensity. With the treatment of MTase, the cutting site was disturbed by the methylation of cytosine, blocking the enzyme digestion. The transducer presented here showed an excellent analytical performance toward MTase M.HhaI in the concentration range 0.08~24 U mL-1 with a detection limit of 0.057 U mL-1 calculated according to the UCL intensity changes at 656 nm excited by 980 nm CW laser, which is superior to most of the reported methods. Furthermore, the as-fabricated transducer also demonstrated high testing and screening capability toward enzyme inhibitors' evaluation. The method takes the advantage of low background fluorescence of UCNPs to improve the accuracy of the measurement, which can be developed as a general strategy for the analysis of various disease-related methyltransferase activity and their corresponding inhibitors, offering a promising strategy for high-performance diagnosis, high-efficient drug exploitation, and treatment effectiveness evaluation.


Subject(s)
DNA Methylation , Limit of Detection
17.
Chemosphere ; 255: 126954, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32387908

ABSTRACT

Silica nanoparticles (SiNPs) are one of the most widely used types of nanoparticles across many industrial sectors, and are known to be present in the air year-round. In this study, we aimed to evaluate the potential adverse effects of SiNP exposure on pulmonary epithelial tight junctions, which serve as a critical barrier between the respiratory system and the circulatory system. In vivo studies confirmed that SiNPs decreased the protein expression levels of zonula occludens 1 (ZO-1), zonula occludens 2 (ZO-2), and occludin in the lungs of C57BL/6 mice. In vitro studies showed that SiNPs not only decreased the mRNA and protein expression of ZO-1 and ZO-2, but also decreased the protein expression of occludin in human bronchial epithelial (BEAS-2B) cells. In addition, SiNP exposure increased reactive oxygen species (ROS) production and activated extracellular regulated protein kinases (ERKs) and c-Jun N-terminal kinase (JNK). The inhibition of ROS and ERKs effectively protected the SiNP-induced downregulation of ZO-1 mRNA and protein expression, but had no effect on ZO-2 or occludin expression. SiNP-induced matrix metalloproteinase 9 (MMP9) protein expression appeared to be involved in occludin proteolytic degradation, in addition to SiNP-induced direct occludin protein degradation. The present study suggests that SiNPs disturb pulmonary epithelial tight junction structure and function via the ROS/ERK pathway and protein degradation.


Subject(s)
Nanoparticles/toxicity , Reactive Oxygen Species/chemistry , Silicon Dioxide/toxicity , Animals , Bronchi , Down-Regulation , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Lung/metabolism , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Occludin , Phosphoproteins/metabolism , Proteolysis , Reactive Oxygen Species/metabolism , Tight Junctions , Zonula Occludens-1 Protein
18.
Talanta ; 174: 797-802, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28738656

ABSTRACT

Trypsin and its inhibitors are relevant to many physiological processes and diseases. In this study, a nanosensor capable of detecting trypsin and its inhibitors was designed based on the fluorescence resonance energy transfer (FRET) between upconversion nanoparticle (UCNP) and gold nanoparticle (AuNP). UCNP and AuNP were linked by a trypsin-sensitive peptide DDDDARC, forming the non-fluorescent UCNP-peptide-AuNP nanosensor. In the presence of trypsin, the peptide was cleaved and the quenched fluorescence was restored; in the presence of trypsin inhibitors, the recovery of the fluorescence was decreased. The nanosensor showed a superb sensitivity and selectivity for trypsin and its inhibitors, with a detection limit of 4.15ngmL-1 for trypsin. UCNP-peptide-AuNP could eliminate the interference of background fluorescence and avoid the light toxicity, and potentially be used to diagnose trypsin-related diseases or screen trypsin inhibitors.


Subject(s)
Fluorescence Resonance Energy Transfer/instrumentation , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Trypsin/analysis , Amino Acid Sequence , Animals , Buffers , Oligopeptides/chemistry , Oligopeptides/metabolism , Trypsin/metabolism , Trypsin Inhibitors/analysis
19.
Chem Commun (Camb) ; 52(54): 8377-80, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27297736

ABSTRACT

A general detection method for DNA methylation is developed based on the FRET mechanism between upconversion nanoparticles and gold nanorods, which can recognize the cytosine methylation in a known DNA strand at a concentration as low as 7 pM.


Subject(s)
Cytosine/metabolism , DNA Methylation , DNA/genetics , Fluorescence Resonance Energy Transfer , Gold/chemistry , Nanoparticles/chemistry , Nanotubes/chemistry , Base Sequence , DNA/chemistry , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...