Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(2): e24292, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293360

ABSTRACT

Background: Early screening of prostate cancer (PCa) is pivotal but challenging in the clinical scenario due to the phenomena of false positivity or false negativity of some serological evaluations, e.g. PSA testing. Decline of serum Zn2+ levels in PCa patients reportedly plays a crucial role in early screening of PCa. Accordingly, we combined 4 indices comprising the serum levels of total PSA (tPSA), free PSA (fPSA), Zn2+ and demographic information (especially age) in order to ameliorate the efficacies of PCa screening with support vector machine (SVM) algorithms. Methods: A total of 858 male patients with prostate disorders and 345 healthy male controls were enrolled. Patients' data included 4 variables and serum Zn2+ was quantified via a self-invented Zn2+ responsive AIE-based fluorescent probe as previously published. tPSA and fPSA were routinely determined by a chemiluminescent method. Mathematical simulations were conducted to establish a SVM model for the combined diagnostics with the four variables. Moreover, ROC and its characteristic AUC were also employed to evaluate the classification efficacy of the model. Sigmoid function was utilized to estimate corresponding probabilities of classifying the clinical subjects as per 5 grades, which were incorporated into our established prostate index (PI) stratification system. Results: In SVM model, the mean AUC of the ROC with the quartet of variables was approximately 84% for PCa diagnosis, whereas the mean AUC of the ROCs with tPSA, fPSA, [Zn2+] or age alone was 64%, 62%, 55% and 59%, respectively. We further established an integrated prostate index (PI) stratification system with 5 grades and a software package to support clinicians in predicting PCa, with the accuracy of our risk stratification system being 83.3%, 91.6% and 83.3% in predicting normal, benign and PCa cases in corresponding groups. Follow-up findings especially MRI results and PI-RADS scores supported the reliability of this stratification platform as well. Conclusion: Findings from our present study demonstrated that index combination via SVM algorithms may well facilitate clinicians in early differential screening of PCa. Meanwhile, our established PI stratification system based on SVM model and Sigmoid function provided substantial accuracy in preclinical risk prediction of developing prostate cancer.

2.
Eur J Med Chem ; 261: 115818, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37741183

ABSTRACT

EGFR tyrosine kinase inhibitor exerts significant benefits to non-small cell lung cancer patient, but was also limited by the applicable patient screening and drug resistance. Here we presented with an EGFR-targeted and reactive oxygen species-responsive NIR probe (LX) to achieve both patient screening and drug resistance monitoring for EGFR-tyrosine kinase inhibitor. LX inherited EGFR selectivity and preference from EGFR-tyrosine kinase inhibitor, which only showed specificity to tumor with EGFR mutation. Meanwhile, the near-infrared fluorescence of LX was initially inhibited and could be turned on by intratumoral reactive oxygen species. When LX could bind to tumor EGFR, reactive oxygen species-responsive specific fluorescence was generated to indicate the applicability of tumors to EGFR-tyrosine kinase inhibitor. However, no specific LX fluorescence could be observed in inapplicable tumors due to the lack of specificity between tumor EGFR and LX. Meanwhile, when drug resistance was developed during treatments, obvious intratumoral reactive species oxygen decrease happened, which was also deemed as a significant signal of the drug resistance. By visualizing intratumoral reactive oxygen species fluctuation by responsive fluorescence, drug resistance could be monitored and reported.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Fluorescent Dyes/pharmacology , ErbB Receptors , Protein Kinase Inhibitors/pharmacology , Reactive Oxygen Species , Fluorescence , Drug Resistance, Neoplasm , Mutation , Cell Line, Tumor
3.
J Fluoresc ; 33(5): 1853-1860, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36867290

ABSTRACT

H2S was deemed as a toxic gradient in the realm of food and environment but plays pivotal pathophysiological roles in organisms. H2S instabilities and disturbances are always responsible for multiple disorders. We fabricated a H2S-responsive NIR fluorescent probe (HT) for H2S detection and evaluation both in vitro and in vivo. HT exhibited rapid H2S response within 5 min, accompanied with visible color change and NIR fluorescence generation, and the fluorescent intensities were linearly correlated with corresponding H2S concentrations. When HT was incubated with A549 cells, the intracellular H2S and H2S fluctuations could be monitored ore rotundo via the responsive fluorescence. Meanwhile, when HT was co-administrated with H2S prodrug ADT-OH, the H2S release from ADT-OH could be visualized and monitored to evaluate its release efficacy.


Subject(s)
Hydrogen Sulfide , Prodrugs , Humans , Fluorescent Dyes , Thiones , HeLa Cells
4.
Talanta ; 239: 123058, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34823861

ABSTRACT

PURPOSE: Castration resistance prostate cancer patients showing resistance to the androgen deprivation therapy always have low five-year survival rate and worse prognosis. A responsive NIR fluorescent probe was designed to report the androgen dependence and monitor the development of castration resistance for prostate cancer. METHODS: Intratumoral H2S in prostate cancer was closely related to castration resistance. A H2S-responsive NIR probe (HM) was developed as a dependent indicator to report the androgen dependence of prostate cancer. The specificity of HM to H2S and the influence of normal intracellular substrates to the response between H2S and HM were determined. Cell/in vivo animal imaging were performed on PC-3 and LnCAP cell/tumor bearing mice, which presented with androgen independence and androgen dependence, respectively. RESULTS: When HM responded to H2S, strong fluorescence at 770 nm could be rapidly turned on in 5 min with the stokes shift as large as 200 nm. The recognition between HM and H2S showed high specificity. Neither other common substrates showed capacity to turn on HM's fluorescence, nor their existence demonstrated competition. The fluorescence intensity was linearly dependent to the H2S concentration and the limited of detection was 0.15 µM. When HM was applied to PC-3/LNCaP prostate cancer cell and tumor, the intracellular and intratumoral H2S could be clearly imaged and monitored. CONCLUSION: HM showing obvious fluorescent behaviors in androgen dependence and independence prostate tumor, which could work as an indicator to reported the androgen dependence of prostate cancer and monitor the development of castration resistance.


Subject(s)
Androgens , Prostatic Neoplasms , Androgen Antagonists , Animals , Cell Line, Tumor , Fluorescent Dyes , Humans , Male , Mice , Prostatic Neoplasms/diagnostic imaging
5.
Bioorg Med Chem ; 54: 116583, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34952297

ABSTRACT

An integrin α2ß1-targeted PET probe (68Ga-IABtP) was developed to serve as a supplement and alternative of PSMA imaging for prostate cancer. 68Ga-IABtP was synthesized by labeling the precursor peptide with 68Ga with 93% labeling yield and 4.14 MBq/µg specific radioactivity. 68Ga-IABtP showed no specific uptake in LNCaP prostate cancer cell with low integrin α2ß1 expression but significantly increased uptake in PC-3 prostate cancer cell with high integrin α2ß1 expression, which could be specifically blocked by the integrin α2ß1 monoclonal antibody. The efflux experiments demonstrated that 68Ga-IABtP could rapidly penetrate into PC-3 cell after cell binding, thereby prolonging the residence time in the tumor and allow enough time for probe clearance from the circulation and non-specific organs. The biodistribution study indicated that 68Ga-IABtP showed no specific accumulation in non-target organs and was quickly cleared from the kidney. The in vivo PET-CT imaging demonstrated that 68Ga-IABtP showed no specific uptake in LNCaP tumor but could specifically accumulate in the PC-3 tumor, and was rapidly cleared from spleen, intestine, kidney and liver, resulting in excellent contrast effect with low background signal and high target to non-target ratios.


Subject(s)
Drug Development , Integrin alpha2beta1/antagonists & inhibitors , Kallikreins/analysis , Positron-Emission Tomography , Prostate-Specific Antigen/analysis , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals/pharmacology , Animals , Dose-Response Relationship, Drug , Gallium Radioisotopes , Humans , Integrin alpha2beta1/genetics , Integrin alpha2beta1/metabolism , Male , Mice , Mice, Nude , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , PC-3 Cells , Prostatic Neoplasms/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Structure-Activity Relationship
6.
Talanta ; 235: 122771, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517629

ABSTRACT

Intracellular cysteine and glutathione was deemed as the most important reductants in the cell and played significant roles in the cellular homeostasis and redox adjustment. Here we developed a NIR fluorescent probe (HI) to detect and report the intracellular cysteine and glutathione, and monitor the development of the drug resistance of tumor. HI with both excited wavelength and emitting wavelength located within near infrared area showed no fluorescence in the normal physiological environment. However, when HI responded to cysteine and glutathione, strong NIR fluorescence could be turned on, which was linear dependent to the cysteine concentrations and the limited of detection was 0.18 µM. The response between HI and cysteine/glutathione demonstrated high specificity and no other amino acids showed influence or competition. The HPLC identification of the recognition results confirmed the response of acryloyloxy on the HI and active sulfhydryl on the cysteine/glutathione. DFT calculation of the HOMO and LUMO energy before and after response revealed the intramolecular charge transfer mechanism that induced the generation of the fluorescence. When HI was incubated with PATU-8988 and PATU-8988/Fu cell, the intracellular cysteine and glutathione could be clearly imaged and monitored by the enhanced fluorescence. Meanwhile, when HI was applied to the tumor-bearing mice, the drug resistance of tumor could be monitored and reported.


Subject(s)
Cysteine , Fluorescent Dyes , Animals , Drug Resistance , Fluorescent Dyes/pharmacology , Glutathione , Mice , Spectrometry, Fluorescence
7.
J Biochem Mol Toxicol ; 35(5): e22728, 2021 May.
Article in English | MEDLINE | ID: mdl-33592126

ABSTRACT

Arsenic trioxide (ATO) has been shown to have antitumor effect in different tumors, although the underlying mechanisms are not fully understood. Autophagy plays a critical role in tumorigenesis and cancer therapy and has been found to be activated by ATO in different cells. However, the role of autophagy in the antitumor effect of ATO has not yet been elucidated. In this study, we investigated the role of autophagy in the antiangiogenic effect of ATO in human umbilical vein endothelial cells (HUVECs) in vitro and its underlying mechanism. Our data showed that ATO suppresses angiogenesis and induces autophagy in HUVECs through upregulation of forkhead box protein O3 (FoxO3a). Co-incubated with autophagy inhibitor or knockdown of FoxO3a effectively inhibited ATO-induced autophagy and reversed the antiangiogenic effect of ATO, indicating that ATO-induced autophagy plays an antiangiogenic role in HUVECs. Our results highlight the importance of autophagy in the antiangiogenic effect of ATO and provide an improved understanding of the function of ATO.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Arsenic Trioxide/pharmacology , Autophagy/drug effects , Forkhead Box Protein O3/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Pathologic/drug therapy , Human Umbilical Vein Endothelial Cells/pathology , Humans , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology
8.
Colloids Surf B Biointerfaces ; 199: 111542, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33373845

ABSTRACT

A novel form of magnetic bead, namely antibody-coated magnetic lipid nano-vehicle (AMLV), was synthesized by embedding Fe3O4 nanoparticles into an amphiphilic antibody-modified liposome as a high-performance circulating tumor cell (CTC) hunter. The CTC capture performance of AMLV was validated based on an enlarged patient sample (including 318 colorectal, 78 breast, 77 lung and 55 liver cancer patients) with high detection rate. The preliminary comparison with Cellsearch was also conducted, indicating that the cell membrane-semblance AMLVEpCAM showed higher capture performance for different kinds of EpCAM-expressed circulating tumor cells in the peripheral blood (4.4 ± 1.2-fold for AMLVEpCAM vs CellsearchTM, n=5, P<0.001). Moreover, the AMLVEpCAM-isolated CTCs could be used as a functional material to provide various clinical information for tumor patients and work as an alternative of tumor tissue to conduct gene analysis after conventional PCR amplification.


Subject(s)
Liver Neoplasms , Neoplastic Cells, Circulating , Humans , Immunomagnetic Separation , Magnetic Phenomena
9.
Oncol Lett ; 18(6): 6732-6740, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31807182

ABSTRACT

The incidence of thyroid disorders, which are common endocrine diseases, has rapidly increased in recent years. However, the etiology and pathogenesis of these disorders remain unclear. Phosphatase and tension homolog (PTEN) is a dual-specific phosphatase that is associated with multiple thyroid disorders; however, the role of PTEN in thyroid disorders remains unknown. In the present study, the human thyroid follicular epithelial cell line Nthy-Ori 3-1 was used to determine the role of PTEN in thyroid disorders. PTEN expression was knocked down using a PTEN-specific short hairpin RNA. Western blotting was subsequently used to determine protein expression, the Matrigel tube formation assay and iodide uptake assay were applied for evaluating the morphology and function of thyroid cells. The results showed that PTEN knockdown decreased the protein expression of paired box 8 (PAX8). The morphology and tubular-like growth pattern of thyroid cells were therefore disrupted, and restoration of PAX8 expression reversed these effects. Furthermore, PTEN-knockdown decreased the expression of specific thyroid proteins (thyroglobulin, TG; thyroid peroxidase, TPO; and sodium/iodide symporter, NIS) and inhibited the iodide uptake ability of thyroid cells by downregulating PAX8, suggesting that PTEN deficiency may impair the function of thyroid cells. In conclusion, the present study reported an important function of PTEN in normal thyroid cells and identified the involvement of PAX8. These results may improve understanding of the role of PTEN in the pathogenesis of thyroid disorders.

10.
Mol Med Rep ; 20(5): 4235-4243, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31545428

ABSTRACT

Proper spindle formation and accurate chromosome segregation are essential for ensuring mitotic fidelity. Phosphatase and tensin homolog (PTEN) is a multifunctional protein, which is able to maintain the stability of the genome and chromosomes. The present study described an essential role of PTEN in regulating chromosome segregation to prevent gross genomic instability via regulation of mitotic arrest deficient 2 (MAD2). PTEN knockdown induced cell cycle arrest and abnormal chromosome segregation, which manifested as the formation of anaphase bridges, lagging chromosomes and premature chromatid separation. In addition, MAD2 was identified as a potential target of PTEN. Furthermore, the present study revealed that PTEN knockdown resulted in MAD2 degradation via the ubiquitin­proteasomal pathway, while restoration of MAD2 expression partially ameliorated the mitotic defects induced by PTEN loss. The results from the present study proposed a novel mechanism by which PTEN maintains chromosome stability.


Subject(s)
Chromosome Aberrations , Chromosome Segregation , Gene Expression Regulation , Mad2 Proteins/genetics , PTEN Phosphohydrolase/deficiency , G2 Phase Cell Cycle Checkpoints/genetics , Genomic Instability , Humans , Spindle Apparatus
11.
Toxicol Lett ; 315: 1-8, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31421153

ABSTRACT

Arsenic trioxide (As2O3) has been used clinically for the treatment of acute promyelocytic leukemia and some solid tumors. However, the mechanisms of its anti-tumor effects are still elusive. Angiogenesis is a key process for tumor initiation, and increasing evidence has supported the role of anti-angiogenesis caused by arsenic in tumor suppression, although the detailed mechanism is not well understood. In the present study, we found that As2O3 significantly inhibited the angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, and this was mediated by the upregulation of FoxO3a. Knockdown of FoxO3a could restore the angiogenic ability of HUVECs. Moreover, vascular endothelial cell-specific knockout of FoxO3a in mice could disrupt the anti-angiogenesis effect of As2O3 and endow the tumors with resistance to As2O3 treatments. Our results revealed a new mechanism by which As2O3 suppresses angiogenesis and tumor growth.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Forkhead Box Protein O3/drug effects , Leukemia, Promyelocytic, Acute/drug therapy , Up-Regulation/drug effects , Animals , Antineoplastic Agents/pharmacology , Cell Enlargement/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Umbilical Veins/drug effects
12.
Int J Nanomedicine ; 14: 4781-4800, 2019.
Article in English | MEDLINE | ID: mdl-31308658

ABSTRACT

Advancements in nanotechnology and molecular biology have promoted the development of a diverse range of models to intervene in various disorders (from diagnosis to treatment and even theranostics). Manganese dioxide nanosheets (MnO2 NSs), a typical two-dimensional (2D) transition metal oxide of nanomaterial that possesses unique structure and distinct properties have been employed in multiple disciplines in recent decades, especially in the field of biomedicine, including biocatalysis, fluorescence sensing, magnetic resonance imaging and cargo-loading functionality. A brief overview of the different synthetic methodologies for MnO2 NSs and their state-of-the-art biomedical applications is presented below, as well as the challenges and future perspectives of MnO2 NSs.


Subject(s)
Biomedical Technology/methods , Manganese Compounds/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Oxides/chemistry , Biosensing Techniques , Nanostructures/toxicity , Oxides/toxicity , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...