Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Infect Drug Resist ; 17: 4101-4112, 2024.
Article in English | MEDLINE | ID: mdl-39319036

ABSTRACT

Objective: Aim to investigate the pathogens distribution and drug resistance of gram-negative bacteria causing bloodstream infection (BSIs) in Infectious Disease Surveillance of Pediatric from 2016 to 2022. The prevalence of four important drug resistance phenotypes was studied: difficult-to-treat resistance, fluoroquinolone resistance, carbapenem resistance, and extended-spectrum cephalosporin resistance, and to provide reference basis for preventing and treating BSIs diseases in children. Methods: Strain identification and antimicrobial susceptibility tests were independently performed at each hospital. Data were analyzed using Whonet 5.6 and GraphPad Prism 8 software. The Mann-Whitney U-test was used to examine and compare temporal changes. Results: A total of 39977 BSIs strains were isolated, with 27.1% of the negative bacteria causing BSIs (10824 strains). The highest bacteria detected were E. coli and S. maltophilia in the neonatal and pediatric groups. The detection rate of carbapenem-resistant-K. pneumoniae (CRKPN) in neonate group was 31.4%, significantly increased compared with pediatric group, whose detection rate was 24.7%. The rates of resistance to levofloxacin and trimethoprim/sulfamethoxazole were significantly lower in neonatal groups than pediatric groups in BSIs caused by K. pneumoniae. To imipenem and meropenem were 3.6% and 3.9% among neonatal isolates, which was lower than 4.7% and 5.8 among pediatric BSIs caused by E. coli. Isolated from neonatal BSIs caused by A. baumannii showed lower resistance ratios to all the agents tested than those from pediatric. However, only the prevalence of piperacillin/tazobactam resistance was statistically lower than that in pediatric BSIs caused by P. aeruginosa. The average detection rates of carbapenem resistance, extended-spectrum cephalosporin resistance, and fluoroquinolone resistance for K. pneumoniae and E. coli were 28.1%,41.4%,11.6% and 4.0%,24.3%,31.1%, respectively. Conclusion: The detection rate of gram-negative pathogens showed an increasing trend among the bloodstream infection. The detection rate of CRKPN assumed a downward trend in 2018. There are differences types of pathogens between the neonatal group and the pediatric group, The detection rate of CRKPN in the neonate group was significantly higher than pediatric group. The first average detection rates for carbapenem resistance, extended-spectrum cephalosporin resistance, and fluoroquinolone resistance were obtained for A. baumannii, K. pneumoniae, and Escherichia coli, respectively. Those data showed a high level of antimicrobial resistance, which has posed an urgent threat to Children's health, suggested that effective monitoring of antimicrobial resistance and antimicrobial stewardship among children in China are required.

2.
Article in English | MEDLINE | ID: mdl-39312393

ABSTRACT

A Gram-stain-negative, non-spore-forming and strictly aerobic bacterial strain, designated R-7T, was isolated from river sediment in Wuxi, Jiangsu, PR China. Cells (1.6-3.8 µm long and 0.6-0.8 µm wide) were slightly curved to straight rods and motile by means of a polar flagellum. The strain grew optimally on Reasoner's 2A medium at 30 °C, pH 7.0 and with 1.0% (w/v) NaCl. Strain R-7T exhibited closest 16S rRNA gene sequence similarities to Dongia mobilis CGMCC 1.7660T (95.4%), D. rigui 04SU4-PT (94.6%) and D. soli D78T (93.8%). The phylogenetic trees based on genomic and 16S rRNA gene sequences showed that strain R-7T was clustered in the genus Dongia. The obtained average nucleotide identity and digital DNA-DNA hybridization values between R-7T and the three type strains of the genus Dongia were 73.4, 72.8 and 72.4% and 19.5, 19.0 and 18.7%, respectively. The major respiratory quinone was Q-10. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminolipids, two unidentified aminophospholipids and nine unidentified polar lipids. The major cellular fatty acids (>5% of the total) were cyclo-C19 : 0 ω8c, C16 : 0 and C16 : 0 2-OH. The DNA G+C content was 65.5 mol%. On the basis of the evidence presented in this study, strain R-7T represents a novel species of the genus Dongia, for which the name Dongia sedimenti sp. nov. is proposed, with strain R-7T (=KCTC 8082T=MCCC 1K08805T) as the type strain.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Rivers , Sequence Analysis, DNA , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , China , DNA, Bacterial/genetics , Ubiquinone
3.
Adv Sci (Weinh) ; : e2406890, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225582

ABSTRACT

Interactions between lone pairs and aromatic π systems are significant across biology and self-assembled materials. Herein, employing an achiral confinement metal-organic framework (MOF) encapsulates guest molecules, it is successfully realized that lone pair (lp)-π interaction induces fluorescence "turn-on" and circularly polarized luminescence for the first time. The MOFs synthesized based on naphthalenediimide show nearly non-emissive, which can be light-up by introducing acetone or ester guests containing lone pairs-π interaction. Furthermore, the introduction of a series of lp-rich chiral esters induces supramolecular chirality as well as circularly polarized luminescence in achiral MOFs, while also observing chiral adaptability. This work first demonstrates the luminescence and chiral induction via lone pair electrons-π interactions, presenting a fresh paradigm for the advancement of chiroptical materials.

4.
Appl Environ Microbiol ; : e0131924, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248463

ABSTRACT

3,6-Dichlorosalicylic acid (3,6-DCSA) is the demethylation metabolite of herbicide 3,6-dichloro-2-methoxy benzoic acid (dicamba). Previous studies have shown that anaerobic sludge further transformed 3,6-DCSA through decarboxylation and dechlorination. However, the anaerobe, enzyme, and gene involved in the anaerobic degradation of 3,6-DCSA are still unknown. In this study, an anaerobic sludge that efficiently degraded dicamba was enriched, and a 3,6-DCSA decarboxylase, designated chlorosalicylic acid decarboxylase (CsaD), was partially purified and identified from the anaerobic sludge. Metagenomic analysis showed that the csaD gene was located in a gene cluster of metagenome-assembled genome 8 (MAG8). MAG8 belonged to an uncultured order, OPB41, in the class Coriobacteriia of the phylum Actinobacteria, and its abundance increased approximately once during the enrichment process. CsaD was a non-oxidative decarboxylase in the amidohydrolase 2 family catalyzing the decarboxylation of 3,6-DCSA and 6-chlorosalicylic acid (6-CSA). Its affinity and catalytic efficiency for 3,6-DCSA were significantly higher than those for 6-CSA. This study provides new insights into the anaerobic catabolism of herbicide dicamba.IMPORTANCEDicamba, an important hormone herbicide, easily migrates to anoxic habitats such as sediment, ground water, and deep soil. Thus, the anaerobic catabolism of dicamba is of importance. Anaerobic bacteria or sludge demethylated dicamba to 3,6-DCSA, and in a previous study, based on metabolite identification, it was proposed that 3,6-DCSA be further degraded via two pathways: decarboxylation to 2,5-dichlorophenol, then dechlorination to 3-chlorophenol (3-CP); or dechlorination to 6-CSA, then decarboxylation to 3-CP. However, there was no physiological and genetic validation for the pathway. In this study, CsaD catalyzed the decarboxylation of both 3,6-DCSA and 6-CSA, providing enzyme-level evidence for the anaerobic catabolism of 3,6-DCSA through the two pathways. CsaD was located in MAG8, which belonged to an uncultured anaerobic actinomycetes order, OPB41, indicating that anaerobic actinomycetes in OPB41 was involved in the decarboxylation of 3,6-DCSA. This study provides a basis for understanding the anaerobic catabolism of dicamba and the demethylation product, 3,6-DCSA.

5.
Nat Commun ; 15(1): 6559, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095340

ABSTRACT

Macrocyclic conformations play a crucial role in regulating their properties. Our understanding of the determinants to control macrocyclic conformation interconversion is still in its infancy. Here we present a macrocycle, octamethyl cyclo[4](1,3-(4,6)-dimethylbenzene)[4]((4,6-benzene)(1,3-dicarboxylate) (OC-4), that can exist at 298 K as two stable atropisomers with C2v and C4v symmetry denoted as C2v-OC-4 and C4v-OC-4, respectively. Heating induces the efficient stepwise conversion of C2v- to C4v-OC-4 via a Cs-symmetric intermediate (Cs-OC-4). It differs from the typical transition state-mediated processes of simple C-C single bond rotations. Hydrolysis and further esterification with a countercation dependence promote the generation of C2v- and Cs-OC-4 from C4v-OC-4. In contrast to C2v-OC-4, C4v-OC-4 can bind linear guests to form pseudo-rotaxans, or bind C60 or C70 efficiently. The present study highlights the differences in recognition behavior that can result from conformational interconversion, as well as providing insights into the basic parameters that govern coupled molecular rotations.

6.
Foods ; 13(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39200399

ABSTRACT

In order to enhance the quality of hot air drying for Tartary buckwheat sprouts and minimize the loss of active substances, this research explored the impact of Color Protection(CP), Osmosis(OM), Blanching (BC), ß-cyclodextrin (ß-CD), and Ultrasound (US) in conjunction with hot air drying on the color, nutritional value, antioxidant properties, and other attributes of Tartary buckwheat sprouts. The findings revealed that as the drying temperature increased from 50 °C to 70 °C, the drying duration for Tartary buckwheat sprouts decreased across all treatment groups, leading to a higher dehydration rate. Treatments involving CP, US, and BC effectively reduced the drying time of Tartary buckwheat sprouts. Sprouts subjected to CP, ß-CD, and US treatments exhibited elevated L* values and decreased a* values and displayed a more vibrant green color. When exposed to a hot air setting of 60 °C, the total flavonoid content in the CP, OM, ß-CD, and US groups increased by 8.76%, 6.76%, 12.34%, and 4.25%, respectively, compared to the Control Group (CK). The application of the CP, OM, ß-CD, and US treatments enhanced the sprouts' ability to combat ABTS and DPPH free radicals. Notably, under hot air conditions of 60 °C, the ß-CD treatment demonstrated the most effective quality preservation during the hot air drying process for sprouts. This study provides valuable insights into the drying behavior of Tartary buckwheat sprouts and offers guidance for optimizing the drying procedures in industrial settings. Tartary buckwheat sprouts contain a variety of polyphenols and have a high water content. The study of changes in active components such as polyphenols and their alteration mechanisms in Tartary buckwheat sprouts under different processing methods is particularly important for the development of sprout processing.

7.
Curr Med Sci ; 44(3): 611-622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842772

ABSTRACT

OBJECTIVE: Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion. Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis. In this study, we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition. METHODS: Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls. A systematic analysis of clinical characteristics and prognostic factors was also conducted. Cell growth was assessed using the Cell Counting Kit-8 (CCK-8) assay, and apoptosis and cell cycle progression were evaluated by flow cytometry. Moreover, RNA pull-down was performed to identify target microRNAs, and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets. RESULTS: Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival (OS) (hazard ratio: 2.357; 95% confidence interval 1.258-4.415). The circ_0012152 knockdown reduced cell growth, increased apoptosis, and inhibited cell cycle progression in AML cell lines. RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152. Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors. We suggested that miR-652-3p targeted SOX4, as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells. CONCLUSION: Circ_0012152 is an independent poor prognostic factor for OS in AML, and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , RNA, Circular , SOXC Transcription Factors , Adult , Female , Humans , Male , Middle Aged , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/genetics , Prognosis , RNA, Circular/genetics , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Up-Regulation/genetics
8.
Nat Chem ; 16(6): 871-880, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594366

ABSTRACT

Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by ß-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.

9.
Adv Mater ; 36(31): e2403329, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38625749

ABSTRACT

The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.

10.
Article in English | MEDLINE | ID: mdl-38634749

ABSTRACT

A Gram-stain-negative bacterium, designated XZ-24T, was isolated from sediment of a river in Mianyang city, Sichuan province, PR China. Cells (1.0-2.0 µm long and 0.4-0.5 µm in width) were strictly aerobic, non-spore-forming, rod shaped, prosthecate and motile by means of a polar flagellum. Growth occurred at 10-37 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-3.0 % (w/v) NaCl (optimum 1.0 % NaCl). The results of phylogenetic analysis based on genomes and 16S rRNA gene sequences indicated that XZ-24T formed a distinct phyletic branch within the family Caulobacteraceae and was most closely related to members of the genera Brevundimonas, Caulobacter and Phenylobacterium with 95.3-96.5 % 16S rRNA gene sequence similarities. The average amino acid identities (AAI) between XZ-24T and species of the family Caulobacteraceae were 47.0-64.5 %, which were below the genus boundary (70 %). The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω7c 11-methyl and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), the isoprenoid quinone was Q-10, and the major polar lipids were 1,2-di-O-acyl-3-O-α-d-glucopyranuronosyl glycerol; 1,2-di-O-acyl-3-O-[d-glucopyranosyl-(1→4)-α-d glucopyranuronosyl] glycerol and phosphatidylglycerol. The genome size of XZ-24T was 2.64 Mb with a DNA G+C content of 68.9 %. On the basis of the evidence presented in this study, strain XZ-24T represents a novel species of a novel genus in the family Caulobacteraceae, for which the name Peiella sedimenti gen. nov., sp. nov. (Type strain XZ-24T=CCTCC AB 20 23 094T=KCTC 8038T) is proposed.


Subject(s)
Caulobacteraceae , Rivers , Base Composition , Fatty Acids/chemistry , Glycerol , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
SELECTION OF CITATIONS
SEARCH DETAIL