Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chin Med Sci J ; 38(3): 191-205, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37503721

ABSTRACT

Background Kidney renal clear cell carcinoma (KIRC) is one of the most common renal malignancies with a high mortality rate. Cuproptosis, a novel form of cell death, is strongly linked to mitochondrial metabolism and is mediated by protein lipoylation, leading to a proteotoxic stress response and cell death. To date, few studies have ellucidated the holistic role of cuproptosis-related genes (CRGs) in the pathogenesis of KIRC.Methods We comprehensively and completely analyzed the RNA sequencing data and corresponding clinical information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We screened for differentially expressed CRGs and constructed a prognostic risk model using univariate and multivariate Cox proportional regression analyses. Kaplan-Meier analysis was performed and receiver operating characteristic (ROC) curves were plotted to predict the prognosis of KIRC patients. Functional enrichment analysis was utilized to explore the internal mechanisms. Immune-related functions were analyzed using single-sample gene set enrichment analysis (ssGSEA), tumour immune dysfunction and exclusion (TIDE) scores, and drug sensitivity analysis.Results We established a concise prognostic risk model consisting of four CRGs (DBT, DLAT, LIAS and PDHB) to predict the overall survival (OS) in KIRC patients. The results of the survival analysis indicated a significantly lower OS in the high-risk group as compared to the patients in the low-risk group. The area under the time-dependent ROC curve (AUC) at 1, 3, and 5 year was 0.691, 0.618, and 0.614 in KIRC. Functional enrichment analysis demonstrated that CRGs were significantly enriched in tricarboxylic acid (TCA) cycle-related processes and metabolism-related pathways. Sorafenib, doxorubicin, embelin, and vinorelbine were more sensitive in the high-risk group.Conclusions We constructed a concise CRGs risk model to evaluate the prognosis of KIRC patients and this may be a new direction for the diagnosis and treatment of KIRC.


Subject(s)
Apoptosis , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Immunotherapy , Kidney , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Prognosis , Copper
2.
Biomater Sci ; 10(21): 6267-6281, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36128848

ABSTRACT

Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.


Subject(s)
Dendrimers , Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Indocyanine Green/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Epithelial Cell Adhesion Molecule , Doxorubicin/pharmacology , Delayed-Action Preparations , Precision Medicine , Disulfiram , Drug Delivery Systems/methods , Neoplasms/therapy , Lactic Acid , Hyperthermia, Induced/methods , Drug Liberation , Theranostic Nanomedicine/methods , Cell Line, Tumor
3.
Int J Pharm ; 611: 121297, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34822966

ABSTRACT

Atherosclerosis (AS), with its intricate pathogenesis, is primarily responsible for the development and progression of cardiovascular diseases. Although drug development has made some achievements in AS therapy, limited targeting ability and rapid blood clearance remain great challenges for achieving superior clinical outcomes. Herein, ginsenoside (Re)- and catalase (CAT)-coloaded porous poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were prepared and then surface modified with U937 cell membranes (UCMs) to yield a dual targeted model and multimechanism treatment biomimetic nanosystem (Cat/Re@PLGA@UCM). The nanoparticles consisted of a core-shell spherical morphology with a favorable size of 112.7 ± 0.4 nm. Furthermore, UCM assisted the nanosystem in escaping macrophage phagocytosis and targeting atherosclerotic plaques. Meanwhile, loading with catalase might not only exhibit favorable antioxidant effects but also enable H2O2-responsive drug release ability. The Cat/Re@PLGA@UCM NPs also exhibited outstanding ROS scavenging properties, downregulating ICAM-1, TNF-α and IL-1ß, while preventing angiogenesis to attenuate the progression of AS. Moreover, the nanodrugs displayed 2.7-fold greater efficiency in reducing the atherosclerotic area in ApoE-/- mouse models compared to free Re. Our nanoformulation also displayed excellent biosafety in response to long-term administration. Overall, our study demonstrated the superiority of UCM-coated stimuli-responsive nanodrugs for effective and safe AS therapy.


Subject(s)
Atherosclerosis , Nanoparticles , Animals , Atherosclerosis/drug therapy , Biomimetics , Cell Membrane , Humans , Hydrogen Peroxide , Mice , U937 Cells
4.
Int J Pharm ; 605: 120784, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34111544

ABSTRACT

Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects. The ginsenosides are self-assembled to form shells to protect insulin from hydrolysis and improve the stability of nanoparticles. The nanoparticles can temporarily permeate into cells in 5 min and promptly excrete from the cell for deeper penetration. The insulin permeation is related to the disorder of stratum corneum lipids caused by ginsenosides. The skin acting as drug depot mantains the nanoparticles released continuously, therefore the body keeps euglycemic for 48 h. Encouraged by its long-lasting and effective transdermal therapy, ginsenosides-based nano-system is expected to deliver other less permeable drugs like proteins and peptides and benefit those who are with chronic diseases that need long-term medication.


Subject(s)
Ginsenosides , Nanoparticles , Administration, Cutaneous , Drug Delivery Systems , Insulin , Permeability , Skin
5.
ACS Appl Mater Interfaces ; 12(51): 57362-57372, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33301289

ABSTRACT

The rapid development of CRISPR/Cas9 systems has opened up tantalizing prospects to sensitize cancers to chemotherapy using efficient targeted genome editing, but safety concerns and possible off-target effects of viral vectors remain a major obstacle for clinical application. Thus, the construction of novel nonviral tumor-targeting nanodelivery systems has great potential for the safe application of CRISPR/Cas9 systems for gene-chemo-combination therapy. Here, we report a polyamidoamine-aptamer-coated hollow mesoporous silica nanoparticle for the co-delivery of sorafenib and CRISPR/Cas9. The core-shell nanoparticles had good stability, enabled ultrahigh drug loading, targeted delivery, and controlled-release of the gene-drug combination. The nanocomplex showed >60% EGFR-editing efficiency without off-target effects in all nine similar sites, regulating the EGFR-PI3K-Akt pathway to inhibit angiogenesis, and exhibited a synergistic effect on cell proliferation. Importantly, the co-delivery nanosystem achieved efficient EGFR gene therapy and caused 85% tumor inhibition in a mouse model. Furthermore, the nanocomplex showed high accumulation at the tumor site in vivo and exhibited good safety with no damage to major organs. Due to these properties, the nanocomplex provides a versatile delivery approach for efficient co-loading of gene-drug combinations, allowing for precise gene editing and synergistic inhibition of tumor growth without apparent side effects on normal tissues.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Sorafenib/therapeutic use , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/toxicity , CRISPR-Associated Protein 9/genetics , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/toxicity , Drug Liberation , Epithelial Cell Adhesion Molecule/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Editing , Genes, erbB-1 , Humans , Mice , Nanoparticles/toxicity , Polyamines/chemistry , Polyamines/toxicity , Porosity , Signal Transduction/drug effects , Silicon Dioxide/toxicity
6.
J Org Chem ; 84(11): 6830-6839, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31117558

ABSTRACT

The iron-catalyzed α-C-H alkylation of N-methylanilines without any directing group by cross-dehydrogenative coupling between unactivated C(sp3)-H and C(sp3)-H bonds has been established for the first time, which provides a good complement to C(sp3)-H activation reactions and expands the field of Fe-catalyzed C-H functionalizations. Many different C(sp3)-H bonds in cyclic alkanes, cyclic ethers, and toluene derivatives can be used as coupling partners. Mechanistic investigations including the radical reaction process, the main role of various reagents, and the kinetic isotope effect experiment were also described.

7.
Clin Transplant ; 25(6): 871-7, 2011.
Article in English | MEDLINE | ID: mdl-21158925

ABSTRACT

In our study, BrdU-labeled marrow stem cells (MSCs) were directly (group 1), by the coronary artery (group 2), or by the ear vein (group 3) transplanted into myocardium to observe their distribution and differentiation in acute myocardial infarction (AMI) rabbit models. BrdU-positive cells, and BrdU and α-sarcomeric actin double positive cells were visible in the infarcted zones and its peripheral region. Cell processes between BrdU-positive cells and between BrdU-positive cells and host cardiomyocytes linked together. Transverse striation and sarcomere were seen. In above zones, new blood capillaries composed of Brdu-positive endothelial cells were present. Density of new blood capillaries was greater in group 1-3 than in control group (p < 0.05) and was the greatest in group 2. Hear function in group 1-3 was improved and was the best in group 2 (p < 0.05). In group 2 and 3, BrdU-positive cells were found in the lungs, liver, and kidneys. In group 3, BrdU-positive cells were greater in the lungs than in the liver and kidneys. We can see that MSCs transplanted by the three ways all can induce the regeneration of cardiomyocytes and blood capillaries. The order from good to poor effectiveness is group 2, group 1, and group 3.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Myocardial Ischemia/pathology , Myocardial Ischemia/therapy , Animals , Bone Marrow , Female , Kidney/cytology , Liver/cytology , Lung/cytology , Male , Rabbits , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...