Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(11): 3525-3531, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466128

ABSTRACT

Variegation and complexity of polarization relaxation loss in many heterostructured materials provide available mechanisms to seek a strong electromagnetic wave (EMW) absorption performance. Here we construct a unique heterostructured compound that bonds α-Fe2O3 nanosheets of the (110) plane on carbon microtubes (CMTs). Through effective alignment between the Fermi energy level of CMTs and the conduction band position of α-Fe2O3 nanosheets at the interface, we attain substantial polarization relaxation loss via novel atomic valence reversal between Fe(III) ↔ Fe(III-) induced with periodic electron injection from conductive CMTs under EMW irradiation to give α-Fe2O3 nanosheets. Such heterostructured materials possess currently reported minimum reflection loss of -84.01 dB centered at 10.99 GHz at a thickness of 3.19 mm and an effective absorption bandwidth (reflection loss ≤ -10 dB) of 7.17 GHz (10.83-18 GHz) at 2.65 mm. This work provides an effective strategy for designing strong EMW absorbers by combining highly efficient electron injection and atomic valence reversal.

2.
J Colloid Interface Sci ; 663: 825-833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447397

ABSTRACT

Graphitic carbon nitride (g-C3N4, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO2 nanosheets supported on modified g-C3N4 (MCN), designated as MCN/TiO2. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-C3N4. Simultaneously, it forms chemical bonds with the supported TiO2 nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO2 photocatalytic system exhibited optimal performance in CO2 reduction. The CH4 production rate reached 26.59 µmol g-1 h-1, surpassing that of TiO2 and CN/TiO2 by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-C3N4.

3.
J Sci Food Agric ; 104(2): 818-828, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37683050

ABSTRACT

BACKGROUND: Lima bean protein isolate (LPI) is an underutilized plant protein. Similar to other plant proteins, it may display poor emulsification properties. In order to improve its emulsifying properties, one effective approach is using protein and polysaccharide mixtures. This work investigated the structural and emulsifying properties of LPI as well as the development of an LPI/xanthan gum (XG)-stabilized oil-in-water emulsion. RESULTS: The highest protein solubility (84.14%) of LPI was observed and the molecular weights (Mw ) of most LPI subunits were less than 35 kDa. The enhanced emulsifying activity index (15.97 m2 g-1 ) of LPI might be associated with its relatively high protein solubility and more low-Mw subunits (Mw < 35 kDa). The effects of oil volume fraction (ϕ) on droplet size, microstructure, rheological behavior and stability of emulsions were investigated. As ϕ increased from 0.2 to 0.8, the emulsion was arranged from spherical and dispersed oil droplets to polyhedral packing of oil droplets adjacent to each other, while the LPI/XG mixtures changed from particles (in the uncrowded interfacial layer) to lamellae (in the crowded interfacial layer). When ϕ was 0.6, the emulsion was in a transitional state with the coexistence of particles and lamellar structures on the oil droplet surface. The LPI/XG-stabilized emulsions with ϕ values of 0.6-0.8 showed the highest stability during a 14-day storage period. CONCLUSION: This study developed a promising plant-based protein resource, LPI, and demonstrates potential application of LPI/XG as an emulsifying stabilizer in foods. © 2023 Society of Chemical Industry.


Subject(s)
Phaseolus , Plant Proteins , Emulsions/chemistry , Plant Proteins/chemistry , Polysaccharides, Bacterial/chemistry , Water/chemistry
4.
Poult Sci ; 103(2): 103317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160613

ABSTRACT

Allometric growth of the forelimb and hindlimb is a widespread phenomenon observed in vertebrates. As a typical precocial bird, ducks exhibit more advanced development of their hindlimbs compared to their forelimbs, enabling them to walk shortly after hatching. This phenomenon is closely associated with the development of long bones in the embryonic stage. However, the molecular mechanism governing the allometric growth of duck forelimb and hindlimb bones is remains elusive. In this study, we employed phenotypic, histological, and gene expression analyses to investigate developmental differences between the humerus (forelimb bone) and tibia/femur (hindlimb bones) in duck embryos. Our results revealed a gradual increase in weight and length disparity between the tibia and humerus from E12 to E28 (embryo age). At E12, endochondral ossification was observed solely in the tibia but not in the humerus. The number of differentially expressed genes (DEGs) gradually increased at H12 vs. T12, H20 vs. T20, and H28 vs. T28 stages consistent with phenotypic variations. A total of 38 DEGs were found across all 3 stages. Protein-protein interaction network analysis demonstrated strong interactions among members of HOXD gene family (HOXD3/8/9/10/11/12), HOXB gene family (HOXB8/9), TBX gene family (TBX4/5/20), HOXA11, SHOX2, and MEIS2. Gene expression profiling indicated higher expression levels for all HOXD genes in the humerus compared to tibia while opposite trends were observed for HOXA/HOXB genes with low or no expression detected in the humerus. These findings suggest distinct roles played by different clusters within HOX gene family during skeletal development regulation of duck embryo's forelimbs versus hind limbs. Notably, TBX4 exhibited high expression levels specifically in tibia whereas TBX5 showed similar patterns exclusively within humerus as seen previously across other species' studies. In summary, this study identified key regulatory genes involved in allometric growth of duck forelimb and hindlimb bones during embryonic development. Skeletal development is a complex physiological process, and further research is needed to elucidate the regulatory role of candidate genes in endochondral ossification.


Subject(s)
Ducks , Transcriptome , Animals , Ducks/genetics , Chickens , Forelimb/physiology , Hindlimb/physiology , Transcription Factors , Humerus
6.
Sci Rep ; 13(1): 20939, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38016989

ABSTRACT

Because China produces the most crayfish in the world, safe solutions must be improved to mitigate the risks of ongoing heavy metal stressors accumulation. This study aimed to use Saccharomyces cerevisiae as a bioremediation agent to counteract the harmful effect of cadmium (Cd) on crayfish (Procambarus clarkia). Our study used three concentrations of S. cerevisiae on crayfish feed to assess their Cd toxicity remediation effect by measuring total antioxidant capacity (TAC) and the biomarkers related to oxidative stress like malondialdehyde (MDA), protein carbonyl derivates (PCO), and DNA-protein crosslink (DPC). A graphite furnace atomic absorption spectroscopy device was used to determine Cd contents in crayfish. Furthermore, the mRNA expression levels of lysozyme (LSZ), metallothionein (MT), and prophenoloxidase (proPO) were evaluated before and following the addition of S. cerevisiae. The results indicated that S. cerevisae at 5% supplemented in fundamental feed exhibited the best removal effect, and Cd removal rates at days 4th, 8th, 12th, and 21st were 12, 19, 29.7, and 66.45%, respectively, which were significantly higher than the basal diet of crayfish. The addition of S. cerevisiae increased TAC levels. On the other hand, it decreased MDA, PCO, and DPC, which had risen due to Cd exposure. Furthermore, it increased the expression of proPO, which was reduced by Cd exposure, and decreased the expression of LSZ and MT, acting in the opposite direction of Cd exposure alone. These findings demonstrated that feeding S. cerevisiae effectively reduces the Cd from crayfish and could be used to develop Cd-free crayfish-based foods.


Subject(s)
Cadmium , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cadmium/metabolism , Astacoidea/metabolism , Hemocytes/metabolism , Oxidative Stress , Antioxidants/metabolism
7.
J Agric Food Chem ; 71(22): 8317-8331, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37249228

ABSTRACT

Consumption of fruits and vegetables has been associated with a reduced risk of multiple diseases, such as metabolic disorders. Flavonols are the most ubiquitous flavonoids in fruits and vegetables. However, dietary flavonols exhibit a general low oral bioavailability for their extensive biotransformation mediated by phase II enzymes in enterocytes and liver as well as by microbiota in the gut lumen. In this context, flavonols have brought attention to a paradox between low bioavailability and health-promoting effects. Flavonols are often transformed prior to absorption, which could change their biological activity. Compared to their parent compounds, the corresponding metabolites of flavonols in vivo might exhibit similar or higher intrinsic bioactivities, or perhaps a decreased efficacious effectiveness. Indeed, a growing body of evidence from biological function studies of metabolites supports the positive and significant contribution of in vivo metabolic processes, particularly conversion mediated by gut microbiota, to the health-promoting benefits of flavonols. As such, further understanding of the metabolic fate of flavonols and biological activities of their metabolites as well as the possible impact of microbiota-mediated conversion on the bioactivity is of great significance to guide a rational diet with flavonol-rich fruits and vegetables and/or flavonol-containing functional foods.


Subject(s)
Flavonols , Gastrointestinal Microbiome , Flavonoids/metabolism , Diet , Vegetables/metabolism , Biotransformation
8.
BMC Genomics ; 24(1): 285, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237371

ABSTRACT

BACKGROUND: The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT: In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION: In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.


Subject(s)
Ducks , Genome-Wide Association Study , Humans , Adult , Animals , Ducks/genetics , Quantitative Trait Loci , Genotype , Body Weight/genetics , Polymorphism, Single Nucleotide
9.
Chembiochem ; 24(1): e202200388, 2023 01 03.
Article in English | MEDLINE | ID: mdl-35977913

ABSTRACT

N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.


Subject(s)
Glycoproteins , Polysaccharides , Glycoproteins/metabolism , Glycosylation , Polysaccharides/chemistry , Oligosaccharides/metabolism , Glycoside Hydrolases/metabolism
10.
Nano Lett ; 22(24): 10018-10024, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36475866

ABSTRACT

Reversible regulation of ferroelectric polarization possesses great potentials recently in bionic neural networks. Photoinduced cis-trans isomers have changeable dipole moments, but they cannot be directed to some specific orientation. Here, we construct a host-guest composite structure which consists of a porous ferroelectric metal (Ni)-organic framework [Ni(DPA)2] as host and photoisomer, azobenzene (AZB), as guest molecules. When AZB molecules are embedded in the nanopores of Ni(DPA)2 in the form of a single molecule, polarization strength tunable regulation is realized after ultraviolet irradiation of 365 and 405 nm via cis-trans isomerism transformation of AZB. An intrinsic built-in field originating from the distorted {NiN2O4} octahedra in Ni(DPA)2 directs the dipole moments of AZB to the applied electric field. As a result, the overlapped ferroelectric polarization strength changes with content of cis-AZB after ultraviolet and visible irradiation. Such a connection of ferroelectric Ni(DPA)2 structure with cis-trans isomers provides an important strategy for regulating the ferroelectric polarization strength.


Subject(s)
Metal-Organic Frameworks , Isomerism , Light , Ultraviolet Rays
11.
ACS Appl Mater Interfaces ; 14(48): 54328-54337, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36399665

ABSTRACT

Truncated octahedron Cu2O (TOC) has attracted more attention for its suitable band gap and high carrier separation efficiency due to introduction of the facet heterojunction, but its practical drawback is still the instability caused by the irreversible disproportionation reaction (Cu2O → Cu + CuO). Here, we design and fabricate the TOC/Cu-MOF (MOF: metal-organic framework) double-heterojunction structures with different Cu-MOF loadings. The introduced heterojunction between TOC and Cu-MOF not only produces a stable interface Cux+ bonding structure with the electronic states localized within the average collisional diameter of electrons 1.72 nm for TOC/2.1 wt %Cu-MOF as the active sites, but also promotes the surface energy level difference between the (100) and (111) facet heterojunctions. Meanwhile, the bonded Cu-MOF with a narrow bandgap effectively consumes holes by recombination with the photoexcited electrons from Cu-MOF itself. In our experiments, the TOC/Cu-MOF double heterostructure with a loading amount of 2.1 wt % Cu-MOF shows an optimal photocatalytic CO2 reduction performance. The CO evolution rate reaches 23.01 µmol g-1 h-1, which is about 2.01 and 4.47 times larger than those of octahedral and hexahedral Cu2O/Cu-MOF, respectively, and an excellent photostability is shown for four cycles with each cycle lasting for 4 h. Such a double heterostructure provides insight into highly efficient electron transfer and photostability in Cu2O-related composite materials.

12.
Chembiochem ; 23(18): e202200302, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35906721

ABSTRACT

Post-translational modifications (PTMs) occurring on lysine residues, especially diverse forms of acylations, have seen rapid growth over the past two decades. Among them, lactylation and ß-hydroxybutyrylation of lysine side-chains are newly identified histone marks and their implications in physiology and diseases have aroused broad research interest. Meanwhile, lysine lipoylation is highly conserved in diverse organisms and well known for its pivotal role in central metabolic pathways. Recent findings in the proteomic profiling of protein lipoylation have nonetheless suggested a pressing need for an extensive investigation. For both basic and applied research, it is necessary to prepare PTM-bearing proteins particularly in a site-specific manner. Herein, we use genetic code expansion to site-specifically generate these lysine PTMs, including lactylation, ß-hydroxybutyrylation and lipoylation in proteins in E. coli and mammalian cells. Notably, using strategies including activity-based selection, screening and rational design, unique pyrrolysyl-tRNA synthetase variants were successfully evolved for each of the three non-canonical amino acids, which enabled efficient production of recombinant proteins. Through encoding these ncAAs, we examined the deacylase activities of mammalian sirtuins to these modifications, and importantly we unfold the lipoamidase activity of several sirtuins.


Subject(s)
Amino Acyl-tRNA Synthetases , Sirtuins , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Lipoylation , Lysine/metabolism , Mammals/metabolism , Protein Processing, Post-Translational , Proteomics , Recombinant Proteins/genetics , Sirtuins/metabolism
13.
Food Res Int ; 156: 111155, 2022 06.
Article in English | MEDLINE | ID: mdl-35651021

ABSTRACT

In the current study, the effects of heat-moisture treatment on the ginsenoside contents and ginsenoside compositions such as Rg3, CK and Rb1 etc. were investigated at different temperatures, relative humidities (RHs) and treatment times. Our findings demonstrated that the highest total ginsenoside content was 7.48% after 12 days treatment at temperature 80 °C and RH 75%. Correspondingly, less polar ginsenosides Rg3 and CK were accumulated increasingly from 0.88 mg/g and 0.84 mg/g to 7.30 mg/g and 15.08 mg/g, respectively, during heat-moisture treatment. Compared to the ginsenoside extracts of untreated ginseng (UGE), the ginsenoside extracts of heat-moisture treated ginseng (HMGE) exerted better scavenging activities of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation (ABTS+), and hydroxyl (OH) radicals, as well as higher cytotoxicity efficiency against HepG2. In addition, HMGE promoted cell apoptosis by up-regulating the related protein expression, especially the caspase-3, caspase-9, and poly (ADP-ribose) polymerase (PARP). Therefore, the cytotoxicity of HMGE against HepG2 cells may be due to the mitochondrial apoptosis pathway induced by up-regulated caspase. These results strongly proved the promising prospect of HMGE as functional food or ingredient in nourishing or disease chemoprevention.


Subject(s)
Ginsenosides , Panax , Ginsenosides/pharmacology , Hep G2 Cells , Hot Temperature , Humans , Panax/chemistry , Plant Extracts
14.
Materials (Basel) ; 15(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35683246

ABSTRACT

Precise evaluation for flexural ultimate capacity of bridges which are subjected to the collision of over-height trucks is essential for making decisions on corresponding maintenance, strengthening or replacement. When the span of a cross-line continuous bridge with a double-box girder was hit by an overly high vehicle, the concrete floor of one girder was severely damaged, and part of the prestressed strands and reinforcements in the girder were broken. After the double-box girder was removed and separated into two single box girders, the ultimate flexural capacity of both box girders was studied by destructive tests, and a comparison was made between the damaged and undamaged girders. Moreover, finite element analysis was conducted to simulate the failure process. The results show that the flexural bearing capacity of the damaged box girder decreased by 33%, but it was still 1.07 times greater than the design bearing capacity, which basically meets the design requirements. Also, the damaged box girder showed a desirable serviceable limit state for three-axle vehicles and five-axle vehicles, but showed an undesirable serviceable limit state for six-axle vehicles. This study shows that repairing or strengthening the damaged span may be better than demolishing and rebuilding the whole superstructure bridge.

15.
Molecules ; 27(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408510

ABSTRACT

The exploitation of mineral resources may cause the environmental release of radionuclides and their introduction in the human trophic chain, affecting public health in the short and long term. A case study of the environmental radiation impact from coal mining and germanium processing was carried out in southwest China. The coal mines contain germanium and uranium and have been exploited for more than 40 years. The farmlands around the site of the coal mining and germanium processing have been contaminated by the solid waste and mine water to some extent since then. Samples of crops were collected from contaminated farmlands in the research area. The research area covers a radius of 5 km, in which there are two coal mines. 210Pb and 210Po were analyzed as the key radionuclides during the monitoring program. The average activity concentrations of 210Pb and 210Po in the crops were 1.38 and 1.32 Bq/kg in cereals, 4.07 and 2.19 Bq/kg in leafy vegetables and 1.63 and 1.32 Bq/kg in root vegetables. The annual effective doses due to the ingestion of 210Pb and 210Po in consumed crops were estimated for adult residents living in the research area. The average annual effective dose was 0.336 mSv/a, the minimum was 0.171 mSv/a and the maximum was 0.948 mSv/a. The results show that the crops grown on contaminated farmland contained an enhanced level of radioactivity concentration. The ingestion doses of local residents in the research area were significantly higher than the average level of 0.112 mSv/a in China, and the world average level of 0.042 mSv/a through 210Pb and 210Po in crop intake, respectively.


Subject(s)
Coal Mining , Germanium , Adult , Coal , Crops, Agricultural , Eating , Humans , Lead , Polonium , Radioisotopes/analysis
16.
Front Cell Dev Biol ; 10: 745129, 2022.
Article in English | MEDLINE | ID: mdl-35198553

ABSTRACT

Birds can be classified into altricial and precocial species. The hatchlings of altricial birds cannot stand, whereas precocial birds can walk and run soon after hatching. It might be owing to the development of the hindlimb bones in the embryo stage, but the molecular regulatory basis underlying the divergence is unclear. To address this issue, we chose the altricial pigeon and the precocial Japanese quail as model animals. The data of tibia weight rate, embryonic skeletal staining, and tibia tissues paraffin section during the embryonic stage showed that the Japanese quail and pigeon have similar skeletal development patterns, but the former had a faster calcification rate. We utilized the comparative transcriptome approach to screen the genes and pathways related to this heterochronism. We separately analyzed the gene expression of tibia tissues of quail and pigeon at two consecutive time points from an inability to stand to be able to stand. There were 2910 differentially expressed genes (DEGs) of quail, and 1635 DEGs of pigeon, respectively. A total of 409 DEGs in common in the quail and pigeon. On the other hand, we compared the gene expression profiles of pigeons and quails at four time points, and screened out eight pairs of expression profiles with similar expression trends but delayed expression in pigeons. By screening the common genes in each pair of expression profiles, we obtained a gene set consisting of 152 genes. A total of 79 genes were shared by the 409 DEGs and the 152 genes. Gene Ontology analysis of these common genes showed that 21 genes including the COL gene family (COL11A1, COL9A3, COL9A1), IHH, MSX2, SFRP1, ATP6V1B1, SRGN, CTHRC1, NOG, and GDF5 involved in the process of endochondral ossification. These genes were the candidate genes for the difference of tibial development between pigeon and quail. This is the first known study on the embryo skeletal staining in pigeon. It provides some new insights for studying skeletal development mechanisms and locomotor ability of altricial and precocial bird species.

17.
Angew Chem Int Ed Engl ; 61(19): e202116545, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35225420

ABSTRACT

Protein glycosylation plays critical roles in many biological processes. However, the fundamental study and application of glycobiology are hindered by the heterogeneousness of oligosaccharides in natural glycoproteins and the difficulty in constructing glycoproteins of human design. Herein, we describe a semisynthetic method to site-specifically modify proteins with reducing carbohydrates. The method involves the genetic incorporation of a side-chain-esterified aspartate, which was subsequently quantitatively converted into alanine-ß-hydrazide (Aßz), and chemoselective conjugation of Aßz with a range of readily available reducing carbohydrates. The resulting Aßz-linked GlcNAc is a close mimic of native N-GlcNAc and could be installed on various proteins, including IL-17A and RNase A. Notably, Aßz-linked GlcNAc on proteins reacted with biantennary oligosaccharide oxazoline derivatives through endoglycosidase-catalyzed transglycosylation reactions to enable the assembly of homogeneous glycans on proteins.


Subject(s)
Glycoproteins , Oligosaccharides , Glycoproteins/metabolism , Glycosylation , Humans , Oligosaccharides/metabolism , Polysaccharides/metabolism , Protein Processing, Post-Translational
18.
Poult Sci ; 101(2): 101604, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34936950

ABSTRACT

The cage rearing model of the modern poultry industry makes the bones of birds more vulnerable to deterioration. In this study, at 8 wk of age, a total of 60 birds were randomly allocated to 2 groups, including the floor rearing group (FRD) and cage rearing group (CRD), and their body weight was measured every 2 wk. At the age of 20 wk, the tibia, femur, and humerus were collected from each group (n = 12) to determine the bone quality parameters such as weight, size, bone mineral density (BMD), breaking strength, cortical thickness, and area, ash content, calcium (Ca) content, and phosphorus (P) content. Meanwhile, the serum metabolome composition of both groups was detected by untargeted metabolome technology. The results showed that there were no significant differences in body weight, bone weight, and size between the 2 groups (P > 0.05), but the humerus mineral density and the breaking strength, cortical bone thickness, cortical bone area percentage of tibia, femur, and humerus of CRD was significantly lower than those of FRD (P < 0.05), indicating that the cage rearing system caused the deterioration of bone quality. Based on nontarget metabolomics, 49 metabolites were correlated with bone quality parameters, and 10 key metabolites were strongly correlated, including erucic acid, citric acid, and ketoleucine. In addition, the KEGG analysis showed that the caged system mainly perturbed amino acid metabolism, lipid metabolism, and energy metabolism, which led to changes in related metabolite levels, produced ROS, and altering energy supply, thus leading to a deterioration of bone quality of cage rearing ducks. Therefore, our findings were helpful to further understand the potential mechanism of the deterioration of duck bone quality in cage rearing system, provided a theoretical basis for reducing the occurrence of poultry osteoporosis, and ensuring the healthy development of poultry breeding.


Subject(s)
Chickens , Ducks , Animals , Bone Density , Humerus , Metabolomics , Tibia
19.
Arch Microbiol ; 204(1): 85, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34958398

ABSTRACT

In poultry, feed restriction is common feeding management to limit poultry nutrients intake so that poultry only intake the essential energy, meeting the basic need of growth and development. Our study investigated whether feeding restriction affects the diversity of the intestinal microbiota of growing breeding ducks. In this research, the 60-120-day-old ducks were raised in restricted and free-feeding groups. After slaughtering, the carcass traits and the cecal contents were collected for 16S rRNA sequencing analysis. After feeding restriction, the growth rate of ducks was limited, the weight and rate of abdominal fat decreased, and the rate of chest and leg muscles increased. In addition, feeding restriction can also change the diversity of intestinal microorganisms in breeding ducks, such as the increase of Firmicutes abundance and the decrease of Bacteroidetes abundance. After analyzing of correlation, significant correlations between gut microbiota and carcass phenotypes were found. The results indicated that gut microbiota might be involved in the life activities associated with phenotypic changes. This study proved the effect of feeding methods on the intestinal microbiota of ducks, providing a theoretical basis of the microbial angle for raising ducks in a feeding-restricted period.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animal Feed/analysis , Animals , Ducks , Intestines , RNA, Ribosomal, 16S/genetics
20.
Chem Sci ; 12(28): 9778-9785, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34349951

ABSTRACT

Site-specific modification of proteins has significantly advanced the use of proteins in biological research and therapeutics development. Among various strategies aimed at this end, genetic code expansion (GCE) allows structurally and functionally distinct non-canonical amino acids (ncAAs) to be incorporated into specific sites of a protein. Herein, we genetically encode an esterified glutamic acid analogue (BnE) into proteins, and demonstrate that BnE can be applied in different types of site-specific protein modifications, including N-terminal pyroglutamation, caging Glu in the active site of a toxic protein, and endowing proteins with metal chelator hydroxamic acid and versatile reactive handle acyl hydrazide. Importantly, novel epigenetic mark Gln methylation is generated on histones via the derived acyl hydrazide handle. This work provides useful and unique tools to modify proteins at specific Glu or Gln residues, and complements the toolbox of GCE.

SELECTION OF CITATIONS
SEARCH DETAIL
...