Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(34): 44767-44779, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39143897

ABSTRACT

Solid-state lithium-sulfur batteries (SSLSBs) have attracted a great deal of attention because of their high theoretical energy density and intrinsic safety. However, their practical applications are severely impeded by slow redox kinetics and poor cycling stability. Herein, we revealed the detrimental effect of aggregation of lithium polysulfides (LiPSs) on the redox kinetics and reversibility of SSLSBs. As a paradigm, we introduced a multifunctional hyperbranched ionic conducting (HIC) polymer serving as a solid polymer electrolyte (SPE) and cathode binder for constructing SSLSBs featuring high electrochemical activity and high cycling stability. It is demonstrated that the unique structure of the HIC polymer with numerous flexible ether oxygen dangling chains and fast segmental relaxation enables the dissociation of LiPS clusters, facilitates the conversion kinetics of LiPSs, and improves the battery's performance. A Li|HIC SPE|HIC-S battery, in which the HIC polymer acts as an SPE and cathode binder, exhibits an initial capacity of 910.1 mA h gS-1 at 0.1C and 40 °C, a capacity retention of 73.7% at the end of 200 cycles, and an average Coulombic efficiency of approximately 99.0%, demonstrating high potential for application in SSLSBs. This work provides insights into the electrochemistry performance of SSLSBs and provides a guideline for SPE design for SSLSBs with high specific energy and high safety.

2.
BMC Genomics ; 25(1): 460, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730330

ABSTRACT

BACKGROUND: Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development. RESULTS: In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis. CONCLUSION: This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.


Subject(s)
Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Zingiber officinale , Zingiber officinale/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
J Hazard Mater ; 457: 131746, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37270959

ABSTRACT

The development of new strategies to improve the removal of organic pollutants with permanganate (KMnO4) is a hot topic in water treatment. While Mn oxides have been extensively used in Advanced Oxidation Processes through an electron transfer mechanism, the field of KMnO4 activation remains relatively unexplored. Interestingly, this study has discovered that Mn oxides with high oxidation states including γ-MnOOH, α-Mn2O3 and α-MnO2, exhibited excellent performance to degrade phenols and antibiotics in the presence of KMnO4. The MnO4- species initially formed stable complexes with the surface Mn(III/IV) species and showed an increased oxidation potential and electron transfer reactivity, caused by the electron-withdrawing capacity of the Mn species acting as Lewis acids. Conversely, for MnO and γ-Mn3O4 with Mn(II) species, they reacted with KMnO4 to produce cMnO2 with very low activity for phenol degradation. The direct electron transfer mechanism in α-MnO2/KMnO4 system was further confirmed through the inhibiting effect of acetonitrile and the galvanic oxidation process. Moreover, the adaptability and reusability of α-MnO2 in complicated waters indicated its potential for application in water treatment. Overall, the findings shed light on the development of Mn-based catalysts for organic pollutants degradation via KMnO4 activation and understanding of the surface-promoted mechanism.

4.
J Hazard Mater ; 430: 128459, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35739658

ABSTRACT

With the prevalence of nanoplastics in daily life, human exposure is inevitable. However, whether and how nanoplastics cause neurotoxicity in humans remains obscure. Herein, we conducted a 28-day repeated dose oral toxicity study in C57BL/6 J mice exposed to 0.25-250 mg/kg body weight (BW) polystyrene nanoplastics (PS-NPs, 50 nm). We revealed that PS-NP-caused Parkinson's disease (PD)-like neurodegeneration in mice by multiple approaches. Furthermore, a single-nucleus RNA sequencing of 62,843 brain nuclei unearthed PS-NP-induced cell-specific responses in the mouse brains. These disturbed responses among various brain cells were primarily linked with energy metabolism disorder and mitochondrial dysfunction in all brain cells, and especially in excitatory neurons, accompanied by inflammatory turbulence in astrocytes and microglia, dysfunction of proteostasis and synaptic-function regulation in astrocytes, oligodendrocytes, and endotheliocytes. These responses may synergize in PS-NP-motivated PD-like neurodegeneration pathogenesis. Moreover, we verified these single-nucleus transcriptomics findings on different brain regions and found that PS-NPs potentially caused PD-like neurodegeneration primarily by causing energy metabolism disorder in the substantia nigra pars compacta (SNc) and striatum. This manifested as decreases in adenosine triphosphate (ATP) content and expression levels of ATP-associated genes and proteins. Given nanoplastics' inevitable and growing exposure risks to humans, the neurological health risks of nanoplastic exposure warrant serious consideration.


Subject(s)
Parkinson Disease , Adenosine Triphosphate/metabolism , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Energy Metabolism , Mice , Mice, Inbred C57BL , Microplastics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Polystyrenes/metabolism , Polystyrenes/toxicity , Transcriptome
5.
Ecotoxicol Environ Saf ; 231: 113180, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026584

ABSTRACT

1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant, and overexposure to this hazardous material causes brain edema and demyelination in humans. We found that 1,2-DCE inhibits aquaporin 4 (AQP4) and is a primary pathogenic effector of 1,2-DCE-induced brain edema in animals. However, AQP4 down-regulation's link with cortex demyelination after 1,2-DCE exposure remains unclear. Thus, we exposed wild-type (WT) CD-1 mice and AQP4 knockout (AQP4-KO) mice to 0, 100, 350 and 700 mg/m3 1,2-DCE by inhalation for 28 days. We applied label-free proteomics and a cell co-culture system to elucidate the role of AQP4 inhibition in 1,2-DCE-induced demyelination. The results showed that 1,2-DCE down-regulated AQP4 in the WT mouse cortexes. Both 1,2-DCE exposure and AQP4 deletion induced neurotoxicity in mice, including increased brain water content, abnormal pathological vacuolations, and neurobehavioral damage. Tests for interaction of multiple regression analysis highlighted different effects of 1,2-DCE exposure level depending on the genotype, indicating the core role of AQP4 in regulation on 1,2-DCE-caused neurotoxicity. We used label-free quantitative proteomics to detect differentially expressed proteins associated with 1,2-DCE exposure and AQP4 inhibition, and identified down-regulation in myelin basic protein (MBP) and tyrosine-protein kinase Fyn (FYN) in a dose-dependent manner in WT mice but not in AQP4-KO mice. 1,2-DCE and AQP4 deletion separately resulted in demyelination, as detected by Luxol fast blue staining, and manifested as disordered nerve fibers and cavitation in the cortexes. Western blot and immunofluorescence confirmed the decreased AQP4 in the astrocytes and the down-regulated MBP in the oligodendrocytes by 1,2-DCE exposure and AQP4 inhibition, respectively. Finally, the co-culture results of SVG p12 and MO3.13 cells showed that 1,2-DCE-induced AQP4 down-regulation in the astrocytes was responsible for demyelination, by decreasing MBP in the oligodendrocytes. In conclusion, 1,2-DCE induced cortex demyelination by depressing MBP via AQP4 inhibition in the mice.


Subject(s)
Aquaporin 4 , Demyelinating Diseases , Animals , Aquaporin 4/genetics , Demyelinating Diseases/chemically induced , Ethylene Dichlorides/toxicity , Mice , Myelin Basic Protein/genetics
6.
Toxicol Lett ; 354: 1-13, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34718095

ABSTRACT

Aurantio-obtusin (AO) is a major anthraquinone (AQ) compound derived from Cassiae semen (CS). Although pharmacological studies have shown that the CS extracts can serve as effective agents in preclinical and clinical practice, AQ-induced hepatotoxicity in humans has attracted widespread attention. To explore whether AO induces hepatotoxicity and its underlying mechanisms, we exposed larval zebrafish and mice to AO. We found that AO delayed yolk sac absorption, and increased liver area and inflammation in the larval zebrafish. This inflammation was manifested as an increase in liver neutrophils and the up-regulated mRNA expression of interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α) in the larval zebrafish. Furthermore, a pharmacokinetics study showed that AO was quickly absorbed into the blood and rapidly metabolized in the mice. Of note, AO induced hepatotoxicity in a gender-dependent manner, characterized by liver dysfunction, increased hepatocyte necrosis with inflammatory infiltration, and up-regulated mRNAs of Il-6, Tnf-α and monocyte chemotactic protein 1(Mcp1) in the female mice after 28-day oral administration. It also highlighted that AO triggered NOD-like receptor protein (NLRP) signaling in the female mice, as evidenced by the increased NLRP3, Caspase-1, pro-IL-1ß, IL-1ß and IL-18. Finally, we found that AO led to a significant increase in potassium calcium-activated channel, subfamily N, member 4 (KCNN4) and reactive oxygen species (ROS) levels, along with decreased nuclear factor kappa B p65 (NF-κB p65), in the female mouse livers. In conclusion, AO induced hepatotoxicity by activating NLRP3 inflammasome signaling, at least in part, through increased KCNN4 and ROS production, and NF-κB inhibition.


Subject(s)
Anthraquinones/toxicity , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/physiopathology , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/physiopathology , Zebrafish/metabolism , Animals , Cassia/chemistry , Disease Models, Animal , Drugs, Chinese Herbal/toxicity , Female , Humans , Larva/drug effects , Mice , Signal Transduction/drug effects
7.
Oncotarget ; 6(36): 39073-87, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26472024

ABSTRACT

Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study.


Subject(s)
Homozygote , Mice, Transgenic/genetics , Optical Imaging/methods , Animals , Breeding/methods , Female , Humans , Male , Mice , Mice, Inbred C57BL , Reproducibility of Results
8.
PLoS One ; 10(3): e0118417, 2015.
Article in English | MEDLINE | ID: mdl-25799309

ABSTRACT

Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic state of the liver in Rm155LG/Alb-Cre mice.


Subject(s)
Biomarkers/metabolism , Fatty Liver/prevention & control , Gene Expression Profiling , Lipid Metabolism , Lipids/analysis , Liver/metabolism , MicroRNAs/physiology , Animals , Blotting, Western , Cells, Cultured , Diet, High-Fat/adverse effects , Fatty Liver/etiology , Fatty Liver/genetics , Female , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
9.
PLoS One ; 8(11): e78965, 2013.
Article in English | MEDLINE | ID: mdl-24244396

ABSTRACT

OBJECTIVE: The purpose of this study was to establish an animal model of chronic pulmonary hypertension with a single-dose intraperitoneal injection of monocrotaline (MCT) in young Tibet minipigs, so as to enable both invasive and noninvasive measurements and hence facilitate future studies. METHODS: Twenty-four minipigs (8-week-old) were randomized to receive single-dose injection of 12.0 mg/kg MCT (MCT group, n = 12) or placebo (control group, n = 12 each). On day 42, all animals were evaluated for pulmonary hypertension with conventional transthoracic echocardiography, right heart catheterization (RHC), and pathological changes. Findings of these studies were compared between the two groups. RESULTS: At echocardiography, the MCT group showed significantly higher pulmonary arterial mean pressure (PAMP) compared with the controls (P<0.001). The pulmonary valve curve showed v-shaped signals with reduction of a-waves in minipigs treated with MCT. In addition, the MCT group had longer pulmonary artery pre-ejection phases, and shorter acceleration time and ejection time. RHC revealed higher mean pulmonary arterial pressure (mPAP) in the MCT group than in the control group (P<0.01). A significant and positive correlation between the mPAP values and the PAMP values (R = 0.974, P<0.0001), and a negative correlation between the mPAP and ejection time (R = 0.680, P<0.0001) was noted. Pathology demonstrated evidence of pulmonary vascular remodeling and higer index of right ventricular hypertrophy in MCT-treated minipigs. CONCLUSION: A chronic pulmonary hypertension model can be successfully established in young minipigs at six weeks after MCT injection. These minipig models exhibited features of pulmonary arterial hypertension that can be evaluated by both invasive (RHC) and noninvasive (echocardiography) measurements, and may be used as an easy and stable tool for future studies on pulmonary hypertension.


Subject(s)
Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/physiopathology , Monocrotaline/toxicity , Swine, Miniature , Animals , Echocardiography , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/diagnostic imaging , Hypertrophy, Right Ventricular/physiopathology , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/physiopathology , Swine
10.
PLoS One ; 8(3): e58970, 2013.
Article in English | MEDLINE | ID: mdl-23527059

ABSTRACT

BACKGROUND: The radiation-induced energy metabolism dysfunction related to injury and radiation doses is largely elusive. The purpose of this study is to investigate the early response of energy metabolism in small intestinal tissue and its correlation with pathologic lesion after total body X-ray irradiation (TBI) in Tibet minipigs. METHODS AND RESULTS: 30 Tibet minipigs were assigned into 6 groups including 5 experimental groups and one control group with 6 animals each group. The minipigs in these experimental groups were subjected to a TBI of 2, 5, 8, 11, and 14 Gy, respectively. Small intestine tissues were collected at 24 h following X-ray exposure and analyzed by histology and high performance liquid chromatography (HPLC). DNA contents in this tissue were also examined. Irradiation causes pathologic lesions and mitochondrial abnormalities. The Deoxyribonucleic acid (DNA) content-corrected and uncorrected adenosine-triphosphate (ATP) and total adenine nucleotides (TAN) were significantly reduced in a dose-dependent manner by 2-8 Gy exposure, and no further reduction was observed over 8 Gy. CONCLUSION: TBI induced injury is highly dependent on the irradiation dosage in small intestine and inversely correlates with the energy metabolism, with its reduction potentially indicating the severity of injury.


Subject(s)
Energy Metabolism/radiation effects , Intestine, Small/metabolism , Intestine, Small/radiation effects , Radiation Injuries/metabolism , Swine, Miniature/metabolism , Adenine Nucleotides/metabolism , Animals , DNA Damage/radiation effects , Intestine, Small/pathology , Male , Mitochondria/metabolism , Mitochondria/radiation effects , Mitochondria/ultrastructure , Radiation Dosage , Swine , Time Factors , Triacetoneamine-N-Oxyl/metabolism , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL