Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Clinics (Sao Paulo) ; 79: 100421, 2024.
Article in English | MEDLINE | ID: mdl-38943703

ABSTRACT

AIM: Using Mendelian Randomization (MR) analysis to investigate the potential causal association between Inflammatory Bowel Disease (IBD) and the occurrence of parenteral malignancies, in order to provide some reference for the parenteral malignancy prevention in patients with IBD. METHODS: This was a two-sample MR study based on independent genetic variants strongly linked to IBD selected from the Genome-Wide Association Study (GWAS) meta-analysis carried out by the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). Parenteral malignancy cases and controls were obtained from the FinnGen consortium and the UK Biobank (UKB) release data. Inverse Variance Weighted (IVW), weighted median, MR-Egger, and strength test (F) were utilized to explore the causal association of IBD with parenteral malignancies. In addition, Cochran's Q statistic was performed to quantify the heterogeneity of Instrumental Variables (IVs). RESULTS: The estimates of IVW showed that patients with IBD had higher odds of diffuse large B-cell lymphoma (OR = 1.2450, 95% CI: 1.0311‒1.5034). UC had potential causal associations with non-melanoma skin cancer (all p < 0.05), melanoma (OR = 1.0280, 95% CI: 0.9860‒1.0718), and skin cancer (OR = 1.0004, 95% CI: 1.0001‒1.0006). Also, having CD was associated with higher odds of non-melanoma skin cancer (all p < 0.05) and skin cancer (OR = 1.0287, 95% CI: 1.0022‒1.0559). In addition, results of pleiotropy and heterogeneity tests indicated these results are relatively robust. CONCLUSIONS: IBD has potential causal associations with diffuse large B-cell lymphoma and skin cancers, which may provide some information on the prevention of parenteral malignancies in patients with IBD. Moreover, further studies are needed to explore the specific mechanisms of the effect of IBD on skin cancers.


Subject(s)
Inflammatory Bowel Diseases , Mendelian Randomization Analysis , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/complications , Risk Factors , Genome-Wide Association Study , Genetic Predisposition to Disease , Skin Neoplasms/genetics , Case-Control Studies , Neoplasms/genetics , Neoplasms/etiology , Neoplasms/epidemiology , Lymphoma, Large B-Cell, Diffuse/genetics , Polymorphism, Single Nucleotide
2.
Oncogene ; 43(19): 1399-1410, 2024 May.
Article in English | MEDLINE | ID: mdl-38480915

ABSTRACT

Castration-resistant prostate cancer (CRPC) is an aggressive disease with poor prognosis, and there is an urgent need for more effective therapeutic targets to address this challenge. Here, we showed that dihydroorotate dehydrogenase (DHODH), an enzyme crucial in the pyrimidine biosynthesis pathway, is a promising therapeutic target for CRPC. The transcript levels of DHODH were significantly elevated in prostate tumors and were negatively correlated with the prognosis of patients with prostate cancer. DHODH inhibition effectively suppressed CRPC progression by blocking cell cycle progression and inducing apoptosis. Notably, treatment with DHODH inhibitor BAY2402234 activated androgen biosynthesis signaling in CRPC cells. However, the combination treatment with BAY2402234 and abiraterone decreased intratumoral testosterone levels and induced apoptosis, which inhibited the growth of CWR22Rv1 xenograft tumors and patient-derived xenograft organoids. Taken together, these results establish DHODH as a key player in CRPC and as a potential therapeutic target for advanced prostate cancer.


Subject(s)
Androstenes , Apoptosis , Dihydroorotate Dehydrogenase , Oxidoreductases Acting on CH-CH Group Donors , Prostatic Neoplasms, Castration-Resistant , Xenograft Model Antitumor Assays , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Animals , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Mice , Androstenes/pharmacology , Androstenes/therapeutic use , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects
3.
Medicine (Baltimore) ; 102(31): e34476, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37543801

ABSTRACT

Taohong Siwu Decoction (THSWD) was widely used for the treatment of varicocele-associated male infertility. However, the pharmacological mechanism of action is not completely clear. Therefore, network pharmacology and molecular docking were performed to explore potential mechanism of THSWD in the treatment of varicocele-associated male infertility. The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Swiss Target Prediction, and GeneCards were used to retrieve candidate compounds, action targets, and disease-related targets. The construction of the protein-protein interaction (PPI) network and the screening of core genes were completed by the STRING and Cytoscape 3.9.1, respectively. The DAVID was used to obtain results of gene ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The Mcule analysis platform was used to perform molecular docking. There were a total of 53 candidate compounds and 782 relevant targets in THSWD. There were 45 common targets between THSWD, varicocele, and male infertility, and 23 core genes were found in the PPI network. Biological processes involved response to hypoxia, regulation of blood pressure, cellular response to hypoxia, and regulation of the nitric oxide biosynthetic process. Furthermore, the KEGG pathway enrichment analysis showed that the common targets mainly regulated the disease of varicocele-associated male infertility through the HIF-1 signaling pathway, PI3K-Akt signaling pathway, Relaxin signaling pathway, and TNF signaling pathway. Finally, the molecular docking showed that luteolin, quercetin, and kaempferol had good intercalation with major targets. As predicted by network pharmacology, THSWD regulated varicocele-associated male infertility through multiple compounds and targets, and its mechanism was closely related to inflammatory response, reactive oxygen species damage, and function of blood vessels.


Subject(s)
Drugs, Chinese Herbal , Varicocele , Humans , Male , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Varicocele/complications , Varicocele/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Hypoxia
4.
PLoS One ; 17(12): e0279550, 2022.
Article in English | MEDLINE | ID: mdl-36574388

ABSTRACT

The zebrafish (Danio rerio) is widely used as a promising high-throughput model organism in neurobehavioral research. The mobility of zebrafish can be dissected into multiple behavior endpoints to assess its neurobehavioral performance. However, such facilities on the market are expensive and clumsy to be used in laboratories. Here, we designed a low-cost, automatic zebrafish behavior assay apparatus, barely without unintentional human operational errors. The data acquisition part, composed of Raspberry Pi and HQ Camera, automatically performs video recording and data storage. Then, the data processing process is also on the Raspberry Pi. Water droplets and inner wall reflection of multi-well cell culture plates (used for placing zebrafish) will affect the accuracy of object recognition. And during the rapid movement of zebrafish, the probability of zebrafish tracking loss increased significantly. Thus, ROI region and related thresholds were set, and the Kalman filter algorithm was performed to estimate the best position of zebrafish in each frame. In addition, all functions of this device are realized by the custom-written behavior analysis algorithm, which makes the optimization of the setup more efficient. Furthermore, this setup was also used to analyze the behavioral changes of zebrafish under different concentrations of alcohol exposure to verify the reliability and accuracy. The alcohol exposure induced an inverted U-shape dose-dependent behavior change in zebrafish, which was consistent with previous studies, showcasing that the data obtained from the setup proposed in this study are accurate and reliable. Finally, the setup was comprehensively assessed by evaluating the accuracy of zebrafish detection (precision, recall, F-score), and predicting alcohol concentration by XGBoost. In conclusion, this study provides a simple, and low-cost package for the determination of multiple behavioral parameters of zebrafish with high accuracy, which could be easily adapted for various other fields.


Subject(s)
Behavior, Animal , Zebrafish , Animals , Humans , Reproducibility of Results , Video Recording , Algorithms
5.
Int Immunopharmacol ; 112: 109190, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36116152

ABSTRACT

Macrophages exhibited different phenotypes in response to environmental cues. To meet the needs of rapid response to stimuli, M1-activated macrophages preferred glycolysis to oxidative phosphorylation (OXPHOS) in mitochondria to quickly produce energy and obtain ample raw materials to support cell activation at the same time. Activated macrophages produced free radicals and cytokines to eradicate pathogens but also induced oxidative damage and enhanced inflammation. Grossamide (GSE), a lignanamide from Polygonum multiflorum Thunb., exhibited notable anti-inflammatory effects. In this study, the potential of GSE on macrophage polarization was explored. GSE significantly down-regulated the levels of M1 macrophage biomarkers (Cd32a, Cd80 and Cd86) while increased the levels of M2 indicators (Cd163, Mrc1 and Socs1), showing its potential to inhibit LPS-induced M1 polarization of macrophages. This ability has close a link to its effect on metabolic reprogramming of macrophage. GSE shunted nitric oxide (NO) production from arginine by up-regulation of arginase and down-regulation of inducible nitric oxide synthase, thus attenuated the inhibition of NO on OXPHOS. LPS created three breakpoints in the tricarboxylic acid cycle (TCA) cycle of macrophage as evidenced by down-regulated isocitrate dehydrogenase, accumulation of succinate and the inhibited SDH activity, significantly decreased level of oxoglutarate dehydrogenase expression and its substrate α-ketoglutarate. Thus GSE reduced oxidative stress and amended fragmented TCA cycle. As a result, GSE maintained redox (NAD+/NADH) and energy (ATP/ADP) state, reduced extracellular acidification rate and enhanced the oxygen consumption rate. In addition, GSE decreased the release of inflammatory cytokines by inhibiting the activation of the LPS/TLR4/NF-κB pathway. These findings highlighted the central role of immunometabolism of macrophages in its functional plasticity, which invited future study of mode of action of anti-inflammatory drugs from viewpoint of metabolic reprogramming.


Subject(s)
NAD , NF-kappa B , Mice , Animals , Nitric Oxide Synthase Type II/metabolism , NAD/pharmacology , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Arginase/metabolism , Toll-Like Receptor 4/metabolism , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/pharmacology , Isocitrate Dehydrogenase/therapeutic use , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/therapeutic use , Macrophage Activation , Macrophages , Inflammation/drug therapy , Inflammation/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/therapeutic use , Succinates/therapeutic use , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/pharmacology , Arginine/therapeutic use , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Diphosphate/therapeutic use , Adenosine Triphosphate/metabolism
6.
Anal Bioanal Chem ; 414(5): 1819-1828, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34854960

ABSTRACT

The simultaneous determination of multiple analytes has been an urgent demand in screening of antibiotic residues in food products of animal origin due to its higher analysis efficiency. Five aminoglycoside antibiotics (AGAs) have been monitored in milk, including gentamicin (GEN), kanamycin (KAN), neomycin (NEO), and streptomycin/dihydrostreptomycin (STR/diSTR). A chemiluminescence microarray immunoassay (CLMIA) based on nitrocellulose membrane had been developed for the detection of multiple AGAs, which the LODs for STR, KAN, NEO, and GEN were 4.74 ng/mL, 4.97 ng/mL, 2.99 ng/mL, and 4.42 ng/mL respectively. To improve the sensitivity of immunoassay, single-well carbon tubes (SWCNTs) were utilized as solid support for loading horseradish peroxidase-labelled goat anti-mouse antibody to obtain the multi-enzyme particles. After the optimization of usage of multi-enzyme particles and antibodies, the enhanced CLMIA was established and evaluated. The LODs were 1.25 ng/mL for STR, 0.64 ng/mL for KAN, 0.38 ng/mL for GEN, and 0.39 ng/mL for NEO, which was improved by threefold, sevenfold, 11-fold, and sevenfold compared with the conventional CLMIA developed. These methods presented higher specificity and repeatability. Finally, the enhanced CLMIA based on CNT-assisted multi-enzyme particles was utilized to analyze twenty-five milk samples from local market and dairy farm, which all the results were below the LOD. The enhanced CLMIA showed the great application potential for the detection of multiple targets simultaneously and provided efficient tool for the screening of pollutants in food.


Subject(s)
Aminoglycosides/analysis , Anti-Bacterial Agents/analysis , Drug Residues/analysis , Immunoassay/methods , Luminescent Measurements/methods , Nanotubes, Carbon/chemistry , Animals , Horseradish Peroxidase/chemistry , Limit of Detection
7.
Pestic Biochem Physiol ; 178: 104917, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34446193

ABSTRACT

Fusarium head blight(FHB)caused by Fusarium graminearum species complex (FGSC) is one of the most important diseases around the world. Deoxynivalenol (DON) is a type of mycotoxin produced by FGSC when infecting cereal crops. It is a serious threat to the health of both humans and livestock. Trehalose-6-phosphate phosphatase (TPP), a conserved metabolic enzyme found in many plants and pathogens, catalyzes the formation of trehalose. N-(phenylthio) phthalimide (NPP) has been reported to inhibit the normal growth of nematodes by inhibiting the activity of TPP, but this inhibitor of nematodes has not previously been tested against F. graminearum. In this study, we found that TPP in F. graminearum (FgTPP) had similar secondary structures and conserved cysteine (Cys356) to nematodes by means of bioinformatics. At the same time, the sensitivity of F. graminearum strains to NPP was determined. NPP exhibited a better inhibitory effect on conidia germination than mycelial growth. In addition, the effects of NPP on DON biosynthesis and trehalose biosynthesis pathway in PH-1 were also determined. We found that NPP decreased DON production, trehalose content, glucose content and TPP enzyme activity but increased trehalose-6-phosphate content and trehalose-6-phosphate synthase (TPS) enzyme activity. Moreover, the expression of TRI1, TRI4, TRI5, TRI6, and TPP genes were downregulated, on the contrary, the TPS gene was upregulated. Finally, in order to further determine the control ability of NPP on DON production in the field, we conducted a series of field experiments, and found that NPP could effectively reduce the DON content in wheat grain and had a general control effect on FHB. In conclusion, the research in this study will provide important theoretical basis for controlling FHB caused by F. graminearum and reducing DON production in the field.


Subject(s)
Fusarium , Trichothecenes , Phosphoric Monoester Hydrolases , Phthalimides/pharmacology , Plant Diseases
8.
Sci Rep ; 11(1): 13300, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172780

ABSTRACT

Nucleotide-binding domain and leucine-rich repeat (LRR)-containing family protein 3 (NLRP3) regulated the maturation of inflammation-related cytokines by forming NLRP3 inflammasome, which plays pivotal roles in sepsis pathogenesis. In this study, we evaluated the genetic association of NLRP3 polymorphisms with sepsis (640 patients and 769 controls) and characterized the impact of NLRP3 polymorphisms on NLRP3 expression and inflammatory responses. No significant differences were observed in genotype/allelic frequencies of NLRP3 29940G>C between sepsis cases and controls. The G allele was significantly overrepresented in patients with septic shock than those in sepsis subgroup, and the GC/GG genetypes were related to the 28-day mortality of sepsis. Lipopolysaccharide challenge to peripheral blood mononuclear cells showed a significant suppression of NLRP3 mRNA expression and release of IL-1ß and TNF-α in CC compared with the GC/GG genotype category. Functional experiments with luciferase reporter vectors containing the NLRP3 3'-UTR with the 29940 G-to-C variation in HUVECs and THP-1 cells showed a potential suppressive effect of miR-146a on NLRP3 transcription in the presence of the C allele. Taken together, these results demonstrated that the 29940 G-to-C mutation within the NLRP3 3'-UTR was a gain-of-function alteration that caused the suppression of NLRP3 expression and downstream inflammatory cytokine production via binding with miR-146a, which ultimately protected patients against susceptibility to sepsis progression and poor clinical outcome.


Subject(s)
MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Sepsis , China/epidemiology , Cytokines/metabolism , Disease Progression , Disease Susceptibility , Female , Gain of Function Mutation , Human Umbilical Vein Endothelial Cells , Humans , Inflammasomes/metabolism , Male , MicroRNAs/metabolism , Middle Aged , Polymorphism, Genetic , Sepsis/epidemiology , Sepsis/genetics , THP-1 Cells
9.
Adv Sci (Weinh) ; 7(10): 1903657, 2020 May.
Article in English | MEDLINE | ID: mdl-32440483

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.

10.
Ecol Evol ; 6(4): 1054-63, 2016 02.
Article in English | MEDLINE | ID: mdl-26811747

ABSTRACT

This study is to explore effects of nitrogen application and straw incorporation on abundance of relevant microbes and CH 4 and N2O fluxes in a midseason aerated rice paddy field. Fluxes of CH 4 and N2O were recorded, and abundance of relevant soil microbial functional genes was determined during rice-growing season in a 6-year-long fertilization experiment field in China. Results indicate that application of urea significantly changed the functional microbial composition, while the influence of straw incorporation was not significant. Application of urea significantly decreased the gene abundances of archaeal amoA and mcrA, but it significantly increased the gene abundances of bacterial amoA. CH 4 emission was significantly increased by fresh straw incorporation. Incorporation of burnt straw tended to increase CH 4 emission, while the urea application had no obvious effect on CH 4 emission. N2O emission was significantly increased by urea application, while fresh or burnt straw incorporation tended to decrease N2O emission. The functional microbial composition did not change significantly over time, although the abundances of pmoA, archaeal amoA, nirS, and nosZ genes changed significantly. The change of CH 4 emission showed an inverse trend with the one of the N2O emissions over time. To some extent, the abundance of some functional genes in this study can explain CH 4 and N2O emissions. However, the correlation between CH 4 and N2O emissions and the abundance of related functional genes was not significant. Environmental factors, such as soil Eh, may be more related to CH 4 and N2O emissions.

11.
J Am Coll Nutr ; 34(3): 224-7, 2015.
Article in English | MEDLINE | ID: mdl-25757396

ABSTRACT

The influence of micronization on improving the phytoestrogenic effects of wheat bran was studied. Wheat bran samples were prepared by ball milling, and an animal experiment was carried out by feeding 8-month-old female rats wheat bran. The effect of wheat bran samples on serum estradiol (E2) and progesterone (P) levels of female 8-month-old rats was investigated. The wheat bran with a median diameter of 392.1 µm was micronized to 91.1 and 9.7 µm in median diameter by dry milling and wet milling for 5 hours, respectively. Microscopic observation and X-ray diffraction revealed more potential damage from wet milling than dry milling on the crystal structure of wheat bran granules. Almost all particles were dissolved and there was no obvious crystal peak in the 5-hour wet-milled wheat bran. The serum E2 and P levels of the 8-month-old rats fed wet-milled bran were increased significantly, 2.2 times higher than that of the same aged control group. The experimental results indicated that wet milling could destroy the crystal structure of wheat bran granules and improve the phytoestrogenic effects of wheat bran.


Subject(s)
Dietary Fiber/pharmacology , Food Handling/methods , Phytoestrogens/pharmacology , Animals , Crystallization , Dietary Fiber/analysis , Estradiol/blood , Female , Particle Size , Progesterone/blood , Rats , Rats, Sprague-Dawley , X-Ray Diffraction
12.
Sci Total Environ ; 518-519: 209-16, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25756676

ABSTRACT

Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH4 emission by 280-1370%, while decreasing N2O emission by 7-13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH4 emission by 7-13% and 6-12%, respectively, whereas reduced N2O emission by 10-27% and 9-24%, respectively. The higher CH4 emission could be attributed to the higher soil CH4 production potential triggered by the combined application of straw and microbial inoculant, and the lower N2O emission to the decreased inorganic N content. As a whole, the benefit of lower N2O emission was completely offset by increased CH4 emission, resulting in a higher GWP for NPKSR (5-12%) and NPKSJ (5-11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3-6% and 2-4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone.


Subject(s)
Agricultural Inoculants , Agriculture/methods , Air Pollutants/analysis , Air Pollution/prevention & control , Methane/analysis , Nitrous Oxide/analysis , China , Global Warming , Oryza/growth & development
13.
Zhonghua Wei Chang Wai Ke Za Zhi ; 17(10): 981-4, 2014 Oct.
Article in Chinese | MEDLINE | ID: mdl-25341904

ABSTRACT

OBJECTIVE: To investigate the differences in body composition between Crohn's disease(CD) patients and healthy subjects as well as the characteristics of human body composition in various types of CD. METHODS: A total of 57 CD patients were prospectively selected from the Sixth Affiliated Hospital of Sun Yat-sen University as the study group, while 51 healthy subjects as the control group. Protein content, mineral content, fat content, lean body mass, waist circumference, and hip circumference in the two groups were measured by body composition analyzer. Characteristics of CD at different location and different disease activity index were investigated as well. RESULTS: Intracellular fluid, extracellular fluid, weight, protein content, fat content, lean body mass, muscle weight, body fat ratio, waist hip ratio, body weight ratio, arm muscle circumference, arm circumference, quality of cells, BMI and basal metabolic rate in CD patients were significantly lower than those in control group(all P<0.05). Proportion of protein-deficiency patients and fat-deficiency patients were 66.7% and 47.4% respectively. Protein content, fat content, and lean body mass in ileocolic CD patients were lower than those with small bowel and colonic CD(all P<0.05). Protein content, fat content, lean body mass in patients with high disease activity index were lower than those in patients with low and medium index, but higher basal metablic rate was found in the former group(all P<0.05). CONCLUSIONS: The human body composition in patients with CD are different from healthy people. Disease location and disease activity index have an impact on protein content, fat content, and lean body mass.


Subject(s)
Body Composition , Crohn Disease/physiopathology , Adipose Tissue , Body Weight , Humans
14.
Gut ; 63(10): 1587-95, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24440986

ABSTRACT

BACKGROUND: ClC-3 channel/antiporter plays a critical role in a variety of cellular activities. ClC-3 has been detected in the ileum and colon. OBJECTIVE: To determine the functions of ClC-3 in the gastrointestinal tract. DESIGN: After administration of dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), intestines from ClC-3-/- and wild-type mice were examined by histological, cellular, molecular and biochemical approaches. ClC-3 expression was determined by western blot and immunostaining. RESULTS: ClC-3 expression was reduced in intestinal tissues from patients with UC or Crohn's disease and from mice treated with DSS. Genetic deletion of ClC-3 increased the susceptibility of mice to DSS- or TNBS-induced experimental colitis and prevented intestinal recovery. ClC-3 deficiency promoted DSS-induced apoptosis of intestinal epithelial cells through the mitochondria pathway. ClC-3 interacts with voltage-dependent anion channel 1, a key player in regulation of mitochondria cytochrome c release, but DSS treatment decreased this interaction. In addition, lack of ClC-3 reduced the numbers of Paneth cells and impaired the expression of antimicrobial peptides. These alterations led to dysfunction of the epithelial barrier and invasion of commensal bacteria into the mucosa. CONCLUSIONS: A defect in ClC-3 may contribute to the pathogenesis of IBD by promoting intestinal epithelial cell apoptosis and Paneth cell loss, suggesting that modulation of ClC-3 expression might be a new strategy for the treatment of IBD.


Subject(s)
Antiporters/metabolism , Chloride Channels/physiology , Colitis, Ulcerative/metabolism , Crohn Disease/metabolism , Gastrointestinal Tract/metabolism , Paneth Cells/pathology , Animals , Antiporters/drug effects , Apoptosis , Blotting, Western , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Crohn Disease/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Electrophoresis, Polyacrylamide Gel , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Humans , In Situ Nick-End Labeling , Mice , Mice, Inbred C57BL , Mice, Knockout , Trinitrobenzenesulfonic Acid/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...