Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 3086, 2019.
Article in English | MEDLINE | ID: mdl-32038630

ABSTRACT

Immunoglobulin superfamily member (IgSF) proteins play a significant role in regulating immune responses with surface expression on all immune cell subsets, making the IgSF an attractive family of proteins for therapeutic targeting in human diseases. We have developed a directed evolution platform capable of engineering IgSF domains to increase affinities for cognate ligands and/or introduce binding to non-cognate ligands. Using this scientific platform, ICOSL domains have been derived with enhanced binding to ICOS and with additional high-affinity binding to the non-cognate receptor, CD28. Fc-fusion proteins containing these engineered ICOSL domains significantly attenuate T cell activation in vitro and in vivo and can inhibit development of inflammatory diseases in mouse models. We also present evidence that engineered ICOSL domains can be formatted to selectively provide costimulatory signals to augment T cell responses. Our scientific platform thus provides a system for developing therapeutic protein candidates with selective biological impact for treatments of a wide array of human disorders including cancer and autoimmune/inflammatory diseases.


Subject(s)
Immunoglobulins/chemistry , Immunoglobulins/genetics , Multigene Family , Animals , CD28 Antigens/genetics , CD28 Antigens/immunology , Directed Molecular Evolution , Female , Humans , Immunoglobulins/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Protein Domains , T-Lymphocytes/immunology
2.
J Immunol ; 187(7): 3511-20, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21865550

ABSTRACT

Low Ag dose promotes induction and persistence of regulatory T cells (Tregs) in mice, yet few studies have addressed the role of Ag dose in the induction of adaptive CD4(+)FOXP3(+) Tregs in humans. To this end, we examined the level of FOXP3 expression in human CD4(+)CD25(-) T cells upon activation with autologous APCs and varying doses of peptide. Ag-specific T cells expressing FOXP3 were identified by flow cytometry using MHC class II tetramer (Tmr). We found an inverse relationship between Ag dose and the frequency of FOXP3(+) cells for both foreign Ag-specific and self Ag-specific T cells. Through studies of FOXP3 locus demethylation and helios expression, we determined that variation in the frequency of Tmr(+)FOXP3(+) T cells was not due to expansion of natural Tregs, but instead, we found that induction, proliferation, and persistence of FOXP3(+) cells was similar in high- and low-dose cultures, whereas proliferation of FOXP3(-) T cells was favored in high Ag dose cultures. The frequency of FOXP3(+) cells positively correlated with suppressive function, indicative of adaptive Treg generation. The frequency of FOXP3(+) cells was maintained with IL-2, but not upon restimulation with Ag. Together, these data suggest that low Ag dose favors the transient generation of human Ag-specific adaptive Tregs over the proliferation of Ag-specific FOXP3(-) effector T cells. These adaptive Tregs could function to reduce ongoing inflammatory responses and promote low-dose tolerance in humans, especially when Ag exposure and tolerance is transient.


Subject(s)
Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/immunology , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , Animals , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Separation , Flow Cytometry , Forkhead Transcription Factors/metabolism , Humans , Mice , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism
3.
Proc Natl Acad Sci U S A ; 108(19): 7938-43, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21518860

ABSTRACT

We describe a role for ECM as a biosensor for inflammatory microenvironments that plays a critical role in peripheral immune tolerance. We show that hyaluronan (HA) promotes induction of Foxp3- IL-10-producing regulatory T cells (TR1) from conventional T-cell precursors in both murine and human systems. This is, to our knowledge, the first description of an ECM component inducing regulatory T cells. Intact HA, characteristic of healing tissues, promotes induction of TR1 capable of abrogating disease in an IL-10-dependent mouse colitis model whereas fragmentary HA, typical of inflamed tissues, does not, indicating a decisive role for tissue integrity in this system. The TR1 precursor cells in this system are CD4(+)CD62L(-)FoxP3(-), suggesting that effector memory cells assume a regulatory phenotype when they encounter their cognate antigen in the context of intact HA. Matrix integrity cues might thereby play a central role in maintaining peripheral tolerance. This TR1 induction is mediated by CD44 cross-linking and signaling through p38 and ERK1/2. This induction is suppressed, also in a CD44-dependent manner, by osteopontin, a component of chronically inflamed ECM, indicating that CD44 signaling serves as a nexus for fate decisions regarding TR1 induction. Finally, we demonstrate that TR1 induction signals can be recapitulated using synthetic matrices. These results reveal important roles for the matrix microenvironment in immune regulation and suggest unique strategies for immunomodulation.


Subject(s)
Extracellular Matrix/immunology , Interleukin-10/biosynthesis , Precursor Cells, T-Lymphoid/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Colitis/immunology , Forkhead Transcription Factors/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Humans , Hyaluronan Receptors/immunology , Hyaluronic Acid/immunology , Immunologic Memory , In Vitro Techniques , Interleukin-2/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Osteopontin/immunology , T-Lymphocyte Subsets/immunology
4.
Cell Mol Immunol ; 7(3): 211-20, 2010 May.
Article in English | MEDLINE | ID: mdl-20228832

ABSTRACT

Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular 'glue' directly mediating T cell-DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). The critical factors which determined the extent of DC-T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC-T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC-T cell interactions at the IS.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Hyaluronic Acid/biosynthesis , T-Lymphocytes/immunology , Th1 Cells/immunology , Cell Adhesion , Cell Shape , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Humans , T-Lymphocytes/cytology
5.
J Immunol ; 183(4): 2232-41, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19635906

ABSTRACT

Work by our group and others has demonstrated a role for the extracellular matrix receptor CD44 and its ligand hyaluronan in CD4(+)CD25(+) regulatory T cell (Treg) function. Herein, we explore the mechanistic basis for this observation. Using mouse FoxP3/GFP(+) Treg, we find that CD44 costimulation promotes expression of FoxP3, in part through production of IL-2. This promotion of IL-2 production was resistant to cyclosporin A treatment, suggesting that CD44 costimulation may promote IL-2 production through bypassing FoxP3-mediated suppression of NFAT. CD44 costimulation increased production of IL-10 in a partially IL-2-dependent manner and also promoted cell surface TGF-beta expression. Consistent with these findings, Treg from CD44 knockout mice demonstrated impaired regulatory function ex vivo and depressed production of IL-10 and cell surface TGF-beta. These data reveal a novel role for CD44 cross-linking in the production of regulatory cytokines. Similar salutary effects on FoxP3 expression were observed upon costimulation with hyaluronan, the primary natural ligand for CD44. This effect is dependent upon CD44 cross-linking; while both high-molecular-weight hyaluronan (HA) and plate-bound anti-CD44 Ab promoted FoxP3 expression, neither low-molecular weight HA nor soluble anti-CD44 Ab did so. The implication is that intact high-molecular weight HA can cross-link CD44 only in those settings where it predominates over fragmentary LMW-HA, namely, in uninflamed tissue. We propose that intact but not fragmented extracellular is capable of cross-linking CD44 and thereby maintains immunologic tolerance in uninjured or healing tissue.


Subject(s)
Forkhead Transcription Factors/biosynthesis , Hyaluronan Receptors/physiology , Interleukin-10/biosynthesis , Interleukin-2/biosynthesis , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/biosynthesis , Animals , Cell Survival/genetics , Cell Survival/immunology , Cells, Cultured , Forkhead Transcription Factors/genetics , Gene Knock-In Techniques , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Hyaluronic Acid/metabolism , Hyaluronic Acid/physiology , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism
6.
J Leukoc Biol ; 86(3): 567-72, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19401397

ABSTRACT

The composition of the ECM provides contextual cues to leukocytes in inflamed and healing tissues. One example of this is HA, where LMW-HA, generated during active inflammation, is a TLR ligand and an endogenous "danger signal," and HMW-HA, predominant in healing or intact tissues, functions in an inverse manner. Our data suggest that HMW-HA actively promotes immune tolerance by augmenting CD4+CD25+ T(Reg) function, and LMW-HA does not. Using a human iT(Reg) model, we demonstrate that HMW-HA but not LMW-HA provides a costimulatory signal through cross-linking CD44 which promotes Foxp3 expression, a critical signaling molecule associated with T(Reg). This effect, in part, may be mediated by a role for intact HMW-HA in IL-2 production, as T(Reg) are highly IL-2-dependent for their survival and function. We propose that HMW-HA contributes to the maintenance of immune homeostasis in uninjured tissue and effectively communicates an "all-clear" signal to down-regulate the adaptive immune system through T(Reg) after tissue matrix integrity has been restored.


Subject(s)
CD4 Antigens/immunology , Extracellular Matrix/immunology , Hyaluronic Acid/pharmacology , Immune Tolerance/drug effects , Interleukin-2 Receptor alpha Subunit/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Hyaluronic Acid/chemistry , Molecular Weight
7.
Nucleic Acids Res ; 35(15): 5182-91, 2007.
Article in English | MEDLINE | ID: mdl-17670797

ABSTRACT

Arginine-rich cell-penetrating peptides (CPPs) are promising transporters for intracellular delivery of antisense morpholino oligomers (PMO). Here, we determined the effect of L-arginine, D-arginine and non-alpha amino acids on cellular uptake, splice-correction activity, cellular toxicity and serum binding for 24 CPP-PMOs. Insertion of 6-aminohexanoic acid (X) or beta-alanine (B) residues into oligoarginine R8 decreased the cellular uptake but increased the splice-correction activity of the resulting compound, with a greater increase for the sequences containing more X residues. Cellular toxicity was not observed for any of the conjugates up to 10 microM. Up to 60 microM, only the conjugates with > or = 5 Xs exhibited time- and concentration-dependent toxicity. Substitution of L-arginine with D-arginine did not increase uptake or splice-correction activity. High concentration of serum significantly decreased the uptake and splice-correction activity of oligoarginine conjugates, but had much less effect on the conjugates containing X or B. In summary, incorporation of X/B into oligoarginine enhanced the antisense activity and serum-binding profile of CPP-PMO. Toxicity of X/B-containing conjugates was affected by the number of Xs, treatment time and concentration. More active, stable and less toxic CPPs can be designed by optimizing the position and number of R, D-R, X and B residues.


Subject(s)
Oligonucleotides, Antisense/administration & dosage , Peptides/chemistry , Aminocaproic Acid/chemistry , Arginine/chemistry , Biological Transport , Cell Line , Cell Survival/drug effects , Culture Media , Hemolysis , Humans , Indicators and Reagents , Peptides/metabolism , Peptides/toxicity , Propidium , RNA Splicing , Stereoisomerism , Tetrazolium Salts , Thiazoles , beta-Alanine/chemistry
8.
J Control Release ; 116(3): 304-13, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17097177

ABSTRACT

The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.


Subject(s)
Drug Delivery Systems/methods , Morpholines/administration & dosage , Oligonucleotides, Antisense/administration & dosage , Peptide Nucleic Acids/administration & dosage , Peptides/administration & dosage , RNA Splicing/drug effects , Animals , CHO Cells , Cell Culture Techniques , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cricetinae , Cricetulus , Endocytosis , Endosomes/drug effects , Endosomes/metabolism , HeLa Cells , Humans , Morpholines/chemistry , Morpholinos , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacokinetics , Peptide Nucleic Acids/chemistry , Peptide Nucleic Acids/pharmacology , Peptides/chemistry , Peptides/pharmacology , RNA Splice Sites/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL