Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 23(11): 42, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37733536

ABSTRACT

Studies of emmetropization have traditionally focused on the spatial characteristics of visual input signals. Yet the input to the retina is not a two-dimensional pattern but a temporally-varying luminance flow. The temporal structure of this flow is predominately determined by eye movements, as the human eyes move incessantly. Even when fixating on a single point, a persistent motion known as ocular drift reformats the luminance flow in a way that counterbalances the spectra of natural scenes. It is established that emmetropes are highly sensitive to these luminance modulations. However, their visual consequences in myopia and hyperopia are unknown. Here, we first review how the temporal-frequency distribution of retinal input signals varies with the amount of ocular drift. We then use a detailed optical/geometrical model of the eye to study how the eye movements jointly shape retinal input as a function of refraction. We show that, within the temporal range of sensitivity of the retina, the spatial frequency distribution of the input signals conveys signed information about defocus. Specifically, for a given degree of defocus, myopic retinas experience more power from low spatial frequency stimuli than hyperopic retinas. These redistribution of input power may have a consequence during eye growth supporting the proposal that eye movements should be taken into consideration in the process of emmetropization.


Subject(s)
Hyperopia , Myopia , Humans , Eye Movements , Retina , Face
2.
J Vis ; 23(11): 41, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37733537

ABSTRACT

During fixation, an incessant drift of the eye keeps the image impinging on the retina always in motion. Previous work indicated that luminance modulations from ocular drift serve important visual functions in emmetropes (Intoy & Rucci, 2020; Clark et al 2022). However, it remains unknown how ocular drift varies under myopia, a visual impairment commonly caused by eye elongation. We measured eye movements in 19 individuals with varying degrees of myopia (-0.25D to -6.5D) using a digital Dual-Purkinje Image eye-tracker, a recently developed system with sub-arcminute resolution. Subjects observed stimuli monocularly with vision corrected via a Badal optometer. They engaged in two high-acuity tasks: (a) resolution of a 20/20 line of an eye chart (5 evenly spaced tumbling E optotypes); and (b) a more natural task where subjects were presented with images of distant faces (1°) and asked to report the image's gaze direction. We show ocular drift characteristics differ in myopes relative to emmetropes. Drift was faster and less curved in myopic observers. On the retina, these changes result in luminance modulations that amplify low spatial frequencies at the expense of high spatial frequencies, so that high-frequency signals are effectively weaker in myopes These results are consistent with the proposal that fine spatial vision strongly relies on oculomotor-induced luminance modulations and emphasize the importance of considering fine eye movements in myopia.


Subject(s)
Myopia , Vision, Low , Humans , Eye Movements , Face , Retina
3.
Nat Commun ; 14(1): 3656, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339973

ABSTRACT

Fixation constraints in visual tasks are ubiquitous in visual and cognitive neuroscience. Despite its widespread use, fixation requires trained subjects, is limited by the accuracy of fixational eye movements, and ignores the role of eye movements in shaping visual input. To overcome these limitations, we developed a suite of hardware and software tools to study vision during natural behavior in untrained subjects. We measured visual receptive fields and tuning properties from multiple cortical areas of marmoset monkeys who freely viewed full-field noise stimuli. The resulting receptive fields and tuning curves from primary visual cortex (V1) and area MT match reported selectivity from the literature which was measured using conventional approaches. We then combined free viewing with high-resolution eye tracking to make the first detailed 2D spatiotemporal measurements of foveal receptive fields in V1. These findings demonstrate the power of free viewing to characterize neural responses in untrained animals while simultaneously studying the dynamics of natural behavior.


Subject(s)
Visual Cortex , Animals , Visual Cortex/physiology , Visual Fields , Vision, Ocular , Eye Movements , Haplorhini , Photic Stimulation
4.
J Vis ; 23(5): 4, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37140912

ABSTRACT

Reliably measuring eye movements and determining where the observer looks are fundamental needs in vision science. A classical approach to achieve high-resolution oculomotor measurements is the so-called dual Purkinje image (DPI) method, a technique that relies on the relative motion of the reflections generated by two distinct surfaces in the eye, the cornea and the back of the lens. This technique has been traditionally implemented in fragile and difficult to operate analog devices, which have remained exclusive use of specialized oculomotor laboratories. Here we describe progress on the development of a digital DPI, a system that builds on recent advances in digital imaging to enable fast, highly precise eye-tracking without the complications of previous analog devices. This system integrates an optical setup with no moving components with a digital imaging module and dedicated software on a fast processing unit. Data from both artificial and human eyes demonstrate subarcminute resolution at 1 kHz. Furthermore, when coupled with previously developed gaze-contingent calibration methods, this system enables localization of the line of sight within a few arcminutes.


Subject(s)
Eye-Tracking Technology , Lens, Crystalline , Humans , Eye Movements , Diagnostic Imaging , Cornea
5.
Opt Express ; 17(13): 11161-71, 2009 Jun 22.
Article in English | MEDLINE | ID: mdl-19550516

ABSTRACT

Polarization-resolved, second harmonic generation (P-SHG) microscopy at single pixel resolution is utilized for medical diagnosis of pathological skin dermis. In analyzing the large area, pixel by pixel, second-order susceptibility of normal and pathological skin dermis, we found that P-SHG can be used to distinguish normal and dermal pathological conditions of keloid, morphea, and dermal elastolysis. Specifically, we found that the second order susceptibility tensor ratio of d(33)/d(31) for normal skins is 1.27+/-0.20, while the corresponding values for keloid, morphea, and dermal elastolysis are respectively 1.67+/-0.29, 1.79+/-0.30, and 1.75+/-0.31. We also found that the histograms of the d(33)/d(31) ratio for the pathological skins contain two peak values and are 1.5 times wider than that of the normal case, suggesting that the pathological dermal collagen fibers tend to be more structurally heterogeneous. Our work demonstrates that pixel-resolved, second-order susceptibility microscopy is effective for detecting heterogeneity in spatial distribution of collagen fibers and maybe used for future clinical diagnosis and in vivo studies of collagen pathological conditions.


Subject(s)
Collagen/chemistry , Microscopy/methods , Skin/metabolism , Dermatology/instrumentation , Dermatology/methods , Elasticity , Humans , Image Processing, Computer-Assisted , Keloid/pathology , Lasers , Optical Fibers , Skin/pathology
6.
J Biomed Opt ; 12(2): 024013, 2007.
Article in English | MEDLINE | ID: mdl-17477728

ABSTRACT

The purpose of this study is to demonstrate the application of multiphoton fluorescence and second harmonic generation (SHG) microscopy for the ex-vivo visualization of human corneal morphological alterations due to infectious processes. The structural alterations of both cellular and collagenous components can be respectively demonstrated using fluorescence and SHG imaging. In addition, pathogens with fluorescence may be identified within turbid specimens. Our results show that multiphoton microscopy is effective for identifying structural alterations due to corneal infections without the need of histological processing. With additional developments, multiphoton microscopy has the potential to be developed into an imaging technique effective in the clinical diagnosis and monitoring of corneal infections.


Subject(s)
Cornea/pathology , Eye Infections, Bacterial/pathology , Image Enhancement/methods , Keratitis/pathology , Microscopy, Fluorescence, Multiphoton/methods , Humans , In Vitro Techniques
7.
Opt Lett ; 31(18): 2756-8, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16936882

ABSTRACT

We performed multiphoton fluorescence (MF) and second-harmonic generation (SHG) imaging on human basal cell carcinoma samples. In the dermis, basal cell carcinomas can be identified by masses of autofluorescent cells with relatively large nuclei and marked peripheral palisading. In the normal dermis, SHG from dermal collagen contributes largely to the multiphoton signal. However, within the cancer stroma, SHG signals diminish and are replaced by autofluorescent signals, indicating that normal collagen structures responsible for SHG have been altered. To better delineate the cancer cells and cancer stroma from the normal dermis, a quantitative MF to SHG index is developed. We demonstrate that this index can be used to differentiate cancer cells and adjacent cancer stroma from the normal dermis. Our work shows that MF and SHG imaging can be an alternative for Mohs' surgery in the real-time guidance of the secure removal of basal cell carcinoma.


Subject(s)
Carcinoma, Basal Cell/diagnosis , Dermis/pathology , Skin Neoplasms/diagnosis , Stromal Cells/ultrastructure , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/ultrastructure , Cell Nucleus/ultrastructure , Dermis/ultrastructure , Humans , Microscopy, Fluorescence, Multiphoton , Skin Neoplasms/pathology , Skin Neoplasms/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...