Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475183

ABSTRACT

Detecting road cracks is essential for inspecting and assessing the integrity of concrete pavement structures. Traditional image-based methods often require complex preprocessing to extract crack features, making them challenging when dealing with noisy concrete surfaces in diverse real-world scenarios, such as autonomous vehicle road detection. This study introduces an image-based crack detection approach that combines a Random Forest machine learning classifier with a deep convolutional neural network (CNN) to address these challenges. Three state-of-the-art models, namely MobileNet, InceptionV3, and Xception, were employed and trained using a dataset of 30,000 images to build an effective CNN. A systematic comparison of validation accuracy across various base learning rates identified a base learning rate of 0.001 as optimal, achieving a maximum validation accuracy of 99.97%. This optimal learning rate was then applied in the subsequent testing phase. The robustness and flexibility of the trained models were evaluated using 6,000 test photos, each with a resolution of 224 × 224 pixels, which were not part of the training or validation sets. The outstanding results, boasting a remarkable 99.95% accuracy, 99.95% precision, 99.94% recall, and a matching 99.94% F1 Score, unequivocally affirm the efficacy of the proposed technique in precisely identifying road fractures in photographs taken on real concrete surfaces.

2.
Opt Lett ; 49(3): 762-765, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300109

ABSTRACT

Circular Airy pulsed beams are introduced to significantly optimize the acceleration of neutral Rydberg atoms. Compared with the conventional pulsed Gaussian beams used in the previous report, the circular Airy structure abruptly self-focuses and subsequently propagates with weak diffraction, resulting in a much higher accelerating efficiency for both radial and longitudinal velocities, as well as a longer accelerating range along the propagation axis. The parameter dependencies of the beams on the acceleration are also analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL