Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474140

ABSTRACT

Monocytes are associated with human cardiovascular disease progression. Monocytes are segregated into three major subsets: classical (cMo), intermediate (iMo), and nonclassical (nMo). Recent studies have identified heterogeneity within each of these main monocyte classes, yet the extent to which these subsets contribute to heart disease progression is not known. Peripheral blood mononuclear cells (PBMC) were obtained from 61 human subjects within the Coronary Assessment of Virginia (CAVA) Cohort. Coronary atherosclerosis severity was quantified using the Gensini Score (GS). We employed high-dimensional single-cell transcriptome and protein methods to define how human monocytes differ in subjects with low to severe coronary artery disease. We analyzed 487 immune-related genes and 49 surface proteins at the single-cell level using Antibody-Seq (Ab-Seq). We identified six subsets of myeloid cells (cMo, iMo, nMo, plasmacytoid DC, classical DC, and DC3) at the single-cell level based on surface proteins, and we associated these subsets with coronary artery disease (CAD) incidence based on Gensini score (GS) in each subject. Only frequencies of iMo were associated with high CAD (GS > 32), adj.p = 0.024. Spearman correlation analysis with GS from each subject revealed a positive correlation with iMo frequencies (r = 0.314, p = 0.014) and further showed a robust sex-dependent positive correlation in female subjects (r = 0.663, p = 0.004). cMo frequencies did not correlate with CAD severity. Key gene pathways differed in iMo among low and high CAD subjects and between males and females. Further single-cell analysis of iMo revealed three iMo subsets in human PBMC, distinguished by the expression of HLA-DR, CXCR3, and CD206. We found that the frequency of immunoregulatory iMo_HLA-DR+CXCR3+CD206+ was associated with CAD severity (adj.p = 0.006). The immunoregulatory iMo subset positively correlated with GS in both females (r = 0.660, p = 0.004) and males (r = 0.315, p = 0.037). Cell interaction analyses identified strong interactions of iMo with CD4+ effector/memory T cells and Tregs from the same subjects. This study shows the importance of iMo in CAD progression and suggests that iMo may have important functional roles in modulating CAD risk, particularly among females.


Subject(s)
Coronary Artery Disease , Humans , Female , Male , Coronary Artery Disease/metabolism , Monocytes/metabolism , Leukocytes, Mononuclear , Sex Characteristics , HLA-DR Antigens/metabolism
2.
Nat Cardiovasc Res ; 1(5): 462-475, 2022 May.
Article in English | MEDLINE | ID: mdl-35990517

ABSTRACT

Atherosclerosis is accompanied by a CD4 T cell response to apolipoprotein B (APOB). Major Histocompatibility Complex (MHC)-II tetramers can be used to isolate antigen-specific CD4 T cells by flow sorting. Here, we produce, validate and use an MHC-II tetramer, DRB1*07:01 APOB-p18, to sort APOB-p18-specific cells from peripheral blood mononuclear cell samples from 8 DRB1*07:01+ women with and without subclinical cardiovascular disease (sCVD). Single cell RNA sequencing showed that transcriptomes of tetramer+ cells were between regulatory and memory T cells in healthy women and moved closer to memory T cells in women with sCVD. TCR sequencing of tetramer+ cells showed clonal expansion and V and J segment usage similar to those found in regulatory T cells. These findings suggest that APOB-specific regulatory T cells may switch to a more memory-like phenotype in women with atherosclerosis. Mouse studies showed that such switched cells promote atherosclerosis.

3.
J Leukoc Biol ; 112(5): 1053-1063, 2022 11.
Article in English | MEDLINE | ID: mdl-35866369

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe immune dysfunction, hospitalization, and death. Many patients also develop long-COVID-19, experiencing symptoms months after infection. Although significant progress has been made in understanding the immune response to acute SARS-CoV-2 infection, gaps remain in our knowledge of how innate immunity influences disease kinetics and severity. We hypothesized that cytometry by time-of-flight analysis of PBMCs from healthy and infected subjects would identify novel cell surface markers and innate immune cell subsets associated with COVID-19 severity. In this pursuit, we identified monocyte and dendritic cell subsets that changed in frequency during acute SARS-CoV-2 infection and correlated with clinical parameters of disease severity. Subsets of nonclassical monocytes decreased in frequency in hospitalized subjects, yet increased in the most severe patients and positively correlated with clinical values associated with worse disease severity. CD9, CD163, PDL1, and PDL2 expression significantly increased in hospitalized subjects, and CD9 and 6-Sulfo LacNac emerged as the markers that best distinguished monocyte subsets amongst all subjects. CD9+ monocytes remained elevated, whereas nonclassical monocytes remained decreased, in the blood of hospitalized subjects at 3-4 months postinfection. Finally, we found that CD9+ monocytes functionally released more IL-8 and MCP-1 after LPS stimulation. This study identifies new monocyte subsets present in the blood of COVID-19 patients that correlate with disease severity, and links CD9+ monocytes to COVID-19 progression.


Subject(s)
COVID-19 , Humans , Monocytes , SARS-CoV-2 , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , Myeloid Cells , Hospitalization , Tetraspanin 29/metabolism , Post-Acute COVID-19 Syndrome
4.
Arterioscler Thromb Vasc Biol ; 41(9): 2387-2398, 2021 09.
Article in English | MEDLINE | ID: mdl-34320835

ABSTRACT

Objective: CD4 T cells are important regulators of atherosclerotic progression. The metabolic profile of CD4 T cells controls their signaling and function, but how atherosclerosis affects T-cell metabolism is unknown. Here, we sought to determine the impact of atherosclerosis on CD4 T-cell metabolism and the contribution of such metabolic alterations to atheroprogression. Approach and Results: Using PCR arrays, we profiled the expression of metabolism genes in CD4 T cells from atherosclerotic apolipoprotein-E knockout mice fed a Western diet. These cells exhibited dysregulated expression of genes critically involved in glycolysis and fatty acid degradation, compared with those from animals fed a standard laboratory diet. We examined how T-cell metabolism was changed in either Western diet­fed apolipoprotein-E knockout mice or samples from patients with cardiovascular disease by measuring glucose uptake, activation, and proliferation in CD4 T cells. We found that naive CD4 T cells from Western diet­fed apolipoprotein-E knockout mice failed to uptake glucose and displayed impaired proliferation and activation, compared with CD4 T cells from standard laboratory diet­fed animals. Similarly, we observed that naive CD4 T-cell frequencies were reduced in the circulation of human subjects with high cardiovascular disease compared with low cardiovascular disease. Naive T cells from high cardiovascular disease subjects also showed reduced proliferative capacity. Conclusions: These results highlight the dysfunction that occurs in CD4 T-cell metabolism and immune responses during atherosclerosis. Targeting metabolic pathways within naive CD4 T cells could thus yield novel therapeutic approaches for improving CD4 T-cell responses against atheroprogression.


Subject(s)
Atherosclerosis/metabolism , CD4-Positive T-Lymphocytes/metabolism , Glycolysis , Plaque, Atherosclerotic , Aged , Animals , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Diet, Western , Disease Models, Animal , Fatty Acids/metabolism , Female , Gene Expression Regulation , Glycolysis/genetics , Humans , Lymphocyte Activation , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Oxidation-Reduction , Phenotype
5.
Arterioscler Thromb Vasc Biol ; 40(12): 2845-2859, 2020 12.
Article in English | MEDLINE | ID: mdl-33054398

ABSTRACT

OBJECTIVE: Cardiovascular disease (CVD) remains a significant global health concern with a high degree of mortality. While CD4+ T cells have been extensively studied in CVD, the importance of CD8+ T cells in this disease, despite their abundance and increased activation in human atherosclerotic plaques, remains largely unknown. Thus, the objective of this study was to compare peripheral T-cell signatures between humans with a high (severe) risk of CVD (including myocardial infarction or stroke) and those with a low risk of CVD. Approach and Results: Using mass cytometry, we uncovered a naive CD8+ T (TN) cell population expressing CD95 (termed CD95+CD8+ stem cell memory T [CD8 TSCM] cells) that was enriched in patients with high compared with low CVD. This T-cell subset enrichment within individuals with high CVD was a relative increase and resulted from the loss of CD95lo cells within the TN compartment. We found that CD8 TSCM cells positively correlated with CVD risk in humans, while CD8+ TN cells were inversely correlated. Atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice also displayed respective 7- and 2-fold increases in CD8+ TSCM frequencies within the peripheral blood and aorta-draining paraaortic lymph nodes compared with C57BL/6J mice. CD8+ TSCM cells were 1.7-fold increased in aortas from western diet fed ApoE-/- mice compared with normal laboratory diet-fed ApoE-/- mice. Importantly, transfer of TSCM cells into immune-deficient Rag.Ldlr recipient mice that lacked T cells increased atherosclerosis, illustrating the importance of these cells in atherogenesis. CONCLUSIONS: CD8+ TSCM cells are increased in humans with high CVD. As these TSCM cells promote atherosclerosis, targeting them may attenuate atherosclerotic plaque progression.


Subject(s)
Aortic Diseases/metabolism , Atherosclerosis/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cardiovascular Diseases/metabolism , fas Receptor/metabolism , Adoptive Transfer , Adult , Aged , Aged, 80 and over , Animals , Aortic Diseases/immunology , Aortic Diseases/pathology , Atherosclerosis/immunology , Atherosclerosis/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/immunology , Case-Control Studies , Cytokines/metabolism , Disease Models, Animal , Female , Heart Disease Risk Factors , Humans , Lymphocyte Activation , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Severity of Illness Index
6.
Immunity ; 53(2): 319-334.e6, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814027

ABSTRACT

Neutrophils are the most abundant peripheral immune cells and thus, are continually replenished by bone marrow-derived progenitors. Still, how newly identified neutrophil subsets fit into the bone marrow neutrophil lineage remains unclear. Here, we use mass cytometry to show that two recently defined human neutrophil progenitor populations contain a homogeneous progenitor subset we term "early neutrophil progenitors" (eNePs) (Lin-CD66b+CD117+CD71+). Surface marker- and RNA-expression analyses, together with in vitro colony formation and in vivo adoptive humanized mouse transfers, indicate that eNePs are the earliest human neutrophil progenitors. Furthermore, we identified CD71 as a marker associated with the earliest neutrophil developmental stages. Expression of CD71 marks proliferating neutrophils, which were expanded in the blood of melanoma patients and detectable in blood and tumors from lung cancer patients. In summary, we establish CD117+CD71+ eNeP as the inceptive human neutrophil progenitor and propose a refined model of the neutrophil developmental lineage in bone marrow.


Subject(s)
Antigens, CD/metabolism , Bone Marrow Cells/cytology , Myeloid Progenitor Cells/metabolism , Neutrophils/cytology , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Transferrin/metabolism , Adoptive Transfer , Animals , Bone Marrow/metabolism , Cell Lineage , Humans , Male , Melanoma/blood , Mice , Mice, Inbred NOD , Myeloid Progenitor Cells/cytology
7.
J Leukoc Biol ; 107(6): 883-892, 2020 06.
Article in English | MEDLINE | ID: mdl-32386455

ABSTRACT

Nonclassical monocytes maintain vascular homeostasis by patrolling the vascular endothelium, responding to inflammatory signals, and scavenging cellular debris. Nonclassical monocytes also prevent metastatic tumor cells from seeding new tissues, but whether the patrolling function of nonclassical monocytes is required for this process is unknown. To answer this question, we utilized an inducible-knockout mouse that exhibits loss of the integrin-adaptor protein Kindlin-3 specifically in nonclassical monocytes. We show that Kindlin-3-deficient nonclassical monocytes are unable to patrol the vascular endothelium in either the lungs or periphery. We also find that Kindlin-3-deficient nonclassical monocytes cannot firmly adhere to, and instead "slip" along, the vascular endothelium. Loss of patrolling activity by nonclassical monocytes was phenocopied by ablation of LFA-1, an integrin-binding partner of Kindlin-3. When B16F10 murine melanoma tumor cells were introduced into Kindlin-3-deficient mice, nonclassical monocytes showed defective patrolling towards tumor cells and failure to ingest tumor particles in vivo. Consequently, we observed a significant, 4-fold increase in lung tumor metastases in mice possessing Kindlin-3-deficient nonclassical monocytes. Thus, we conclude that the patrolling function of nonclassical monocytes is mediated by Kindlin-3 and essential for these cells to maintain vascular endothelial homeostasis and prevent tumor metastasis to the lung.


Subject(s)
Cytoskeletal Proteins/genetics , Gene Expression Regulation, Neoplastic , Lymphocyte Function-Associated Antigen-1/genetics , Melanoma, Experimental/genetics , Monocytes/immunology , Phagocytosis , Skin Neoplasms/genetics , Animals , Bone Marrow/immunology , Bone Marrow Transplantation , Cell Adhesion , Cell Communication/immunology , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Female , Humans , Injections, Intravenous , Lung/blood supply , Lung/immunology , Lung/pathology , Lymphocyte Function-Associated Antigen-1/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/secondary , Mice , Mice, Knockout , Monocytes/pathology , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Primary Cell Culture , Signal Transduction , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Whole-Body Irradiation
8.
J Immunol ; 204(1): 192-198, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31767784

ABSTRACT

The role of nonclassical, patrolling monocytes in lung tumor metastasis and their functional relationships with other immune cells remain poorly defined. Contributing to these gaps in knowledge is a lack of cellular specificity in commonly used approaches for depleting nonclassical monocytes. To circumvent these limitations and study the role of patrolling monocytes in melanoma metastasis to lungs, we generated C57BL/6J mice in which the Nr4a1 superenhancer E2 subdomain is ablated (E2 -/- mice). E2 -/- mice lack nonclassical patrolling monocytes but preserve classical monocyte and macrophage numbers and functions. Interestingly, NK cell recruitment and activation were impaired, and metastatic burden was increased in E2 -/-mice. E2 -/- mice displayed unchanged "educated" (CD11b+CD27+) and "terminally differentiated" (CD11b+CD27-) NK cell frequencies. These perturbations were accompanied by reduced expression of stimulatory receptor Ly49D on educated NK cells and increased expression of inhibitory receptor NKG2A/CD94 on terminally differentiated NK cells. Thus, our work demonstrates that patrolling monocytes play a critical role in preventing lung tumor metastasis via NK cell recruitment and activation.


Subject(s)
Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Monocytes/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , Animals , Cell Line, Tumor , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
J Immunol ; 203(12): 3237-3246, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31740486

ABSTRACT

Neuropilin 1 (Nrp1) is a type I transmembrane protein that plays important roles in axonal guidance, neuronal development, and angiogenesis. Nrp1 also helps migrate thymus-derived regulatory T cells to vascular endothelial growth factor (VEGF)-producing tumors. However, little is known about the role of Nrp1 on CD4 T cells in atherosclerosis. In ApoE-/- mice fed a Western diet for 15 wk, we found a 2-fold increase in Nrp1+Foxp3- CD4 T cells in their spleens, periaortic lymph nodes, and aortas, compared with chow-fed mice. Nrp1+Foxp3- CD4 T cells had higher proliferation potential, expressed higher levels of the memory marker CD44, and produced more IFN-γ when compared with Nrp1- CD4 T cells. Treatment of CD4 T cells with oxLDL increased Nrp1 expression. Furthermore, atherosclerosis-susceptible mice selectively deficient for Nrp1 expression on T cells developed less atherosclerosis than their Nrp1-sufficient counterparts. Mechanistically, we found that CD4 T cells that express Nrp1 have an increased capacity to migrate to the aorta and periaortic lymph nodes compared to Nrp1- T cells, suggesting that the expression of Nrp1 facilitates the recruitment of CD4 T cells into the aorta where they can be pathogenic. Thus, we have identified a novel role of Nrp1 on CD4 T cells in atherosclerosis. These results suggest that manipulation of Nrp1 expression on T cells can affect the outcome of atherosclerosis and lower disease incidence.


Subject(s)
Aorta/metabolism , Atherosclerosis/etiology , Atherosclerosis/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Gene Expression , Neuropilin-1/genetics , Animals , Aorta/pathology , Atherosclerosis/pathology , Biomarkers , Cell Movement , Cells, Cultured , Humans , Immunologic Memory , Immunophenotyping , Lipoproteins, LDL/metabolism , Lymphocyte Activation/immunology , Mice , Neuropilin-1/metabolism
10.
J Vis Exp ; (148)2019 06 19.
Article in English | MEDLINE | ID: mdl-31282876

ABSTRACT

In this article, we present a protocol that is optimized to preserve neutrophil-lineage cells in fresh BM for whole BM CyTOF analysis. We utilized a myeloid-biased 39-antibody CyTOF panel to evaluate the hematopoietic system with a focus on the neutrophil-lineage cells by using this protocol. The CyTOF result was analyzed with an open-resource dimensional reduction algorithm, viSNE, and the data was presented to demonstrate the outcome of this protocol. We have discovered new neutrophil-lineage cell populations based on this protocol. This protocol of fresh whole BM preparation may be used for 1), CyTOF analysis to discover unidentified cell populations from whole BM, 2), investigating whole BM defects for patients with blood disorders such as leukemia, 3), assisting optimization of fluorescence-activated flow cytometry protocols that utilize fresh whole BM.


Subject(s)
Bone Marrow Cells/cytology , Flow Cytometry/methods , Mass Spectrometry/methods , Neutrophils/cytology , Biomarkers/metabolism , Bone Marrow/physiology , Bone Marrow Cells/metabolism , Cell Lineage , Humans , Myeloid Cells/metabolism , Neutrophils/metabolism
11.
Cell Rep ; 24(9): 2329-2341.e8, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30157427

ABSTRACT

Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however, unipotent neutrophil progenitors are not well defined. Here, we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly, we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models, including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases, including cancer.


Subject(s)
Bone Marrow/metabolism , Neutrophils/metabolism , Stem Cells/metabolism , Animals , Humans , Mice
12.
Nat Commun ; 9(1): 1095, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545616

ABSTRACT

Regulatory T (Treg) cells contribute to the anti-inflammatory response during atherogenesis. Here we show that during atherogenesis Treg cells lose Foxp3 expression and their immunosuppressive function, leading to the conversion of a fraction of these cells into T follicular helper (Tfh) cells. We show that Tfh cells are pro-atherogenic and that their depletion reduces atherosclerosis. Mechanistically, the conversion of Treg cells to Tfh cells correlates with reduced expression of IL-2Rα and pSTAT5 levels and increased expression of IL-6Rα. In vitro, incubation of naive T cells with oxLDL prevents their differentiation into Treg cells. Furthermore, injection of lipid-free Apolipoprotein AI (ApoAI) into ApoE-/- mice reduces intracellular cholesterol levels in Treg cells and prevents their conversion into Tfh cells. Together our results suggest that ApoAI, the main protein in high-density lipoprotein particles, modulates the cellular fate of Treg cells and thus influences the immune response during atherosclerosis.


Subject(s)
Apolipoprotein A-I/immunology , Atherosclerosis/physiopathology , Cell Differentiation , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Regulatory/cytology , Animals , Apolipoprotein A-I/genetics , Atherosclerosis/genetics , Atherosclerosis/immunology , Female , Humans , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Male , Mice , Mice, Knockout , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology
13.
Arterioscler Thromb Vasc Biol ; 37(11): 2043-2052, 2017 11.
Article in English | MEDLINE | ID: mdl-28935758

ABSTRACT

OBJECTIVE: Nonclassical monocytes (NCM) function to maintain vascular homeostasis by crawling or patrolling along the vessel wall. This subset of monocytes responds to viruses, tumor cells, and other pathogens to aid in protection of the host. In this study, we wished to determine how early atherogenesis impacts NCM patrolling in the vasculature. APPROACH AND RESULTS: To study the role of NCM in early atherogenesis, we quantified the patrolling behaviors of NCM in ApoE-/- (apolipoprotein E) and C57BL/6J mice fed a Western diet. Using intravital imaging, we found that NCM from Western diet-fed mice display a 4-fold increase in patrolling activity within large peripheral blood vessels. Both human and mouse NCM preferentially engulfed OxLDL (oxidized low-density lipoprotein) in the vasculature, and we observed that OxLDL selectively induced NCM patrolling in vivo. Induction of patrolling during early atherogenesis required scavenger receptor CD36, as CD36-/- mice revealed a significant reduction in patrolling activity along the femoral vasculature. Mechanistically, we found that CD36-regulated patrolling was mediated by a SFK (src family kinase) through DAP12 (DNAX activating protein of 12KDa) adaptor protein. CONCLUSIONS: Our studies show a novel pathway for induction of NCM patrolling along the vascular wall during early atherogenesis. Mice fed a Western diet showed increased NCM patrolling activity with a concurrent increase in SFK phosphorylation. This patrolling activity was lost in the absence of either CD36 or DAP12. These data suggest that NCM function in an atheroprotective manner through sensing and responding to oxidized lipoprotein moieties via scavenger receptor engagement during early atherogenesis.


Subject(s)
Atherosclerosis/metabolism , CD36 Antigens/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Femoral Artery/metabolism , Leukocyte Rolling , Monocytes/metabolism , Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , CD36 Antigens/deficiency , CD36 Antigens/genetics , Diet, Western , Disease Models, Animal , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Femoral Artery/pathology , Genetic Predisposition to Disease , Humans , Intravital Microscopy , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Phenotype , Signal Transduction , Time Factors , src-Family Kinases/metabolism
14.
J Clin Invest ; 126(9): 3236-46, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27482882

ABSTRACT

ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol accumulation and alters T cell homeostasis, which may contribute to progression of atherosclerosis. Here, we investigated how the selective loss of ABCG1 in T cells impacts atherosclerosis in LDL receptor-deficient (LDLR-deficient) mice, a model of the disease. In LDLR-deficient mice fed a high-cholesterol diet, T cell-specific ABCG1 deficiency protected against atherosclerotic lesions. Furthermore, T cell-specific ABCG1 deficiency led to a 30% increase in Treg percentages in aorta and aorta-draining lymph nodes (LNs) of these mice compared with animals with only LDLR deficiency. When Abcg1 was selectively deleted in Tregs of LDLR-deficient mice, we observed a 30% increase in Treg percentages in aorta and aorta-draining LNs and reduced atherosclerosis. In the absence of ABCG1, intracellular cholesterol accumulation led to downregulation of the mTOR pathway, which increased the differentiation of naive CD4 T cells into Tregs. The increase in Tregs resulted in reduced T cell activation and increased IL-10 production by T cells. Last, we found that higher ABCG1 expression in Tregs was associated with a higher frequency of these cells in human blood samples. Our study indicates that ABCG1 regulates T cell differentiation into Tregs, highlighting a pathway by which cholesterol accumulation can influence T cell homeostasis in atherosclerosis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Atherosclerosis/metabolism , CD4-Positive T-Lymphocytes/cytology , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Adult , Aged , Aged, 80 and over , Animals , Aorta/metabolism , Cell Differentiation , Cell Proliferation , Cholesterol/metabolism , Disease Progression , Female , Forkhead Transcription Factors/metabolism , Humans , Interleukin-10/metabolism , L-Selectin/metabolism , Lipoproteins/blood , Lymph Nodes/pathology , Male , Membrane Microdomains , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phenotype , Receptors, LDL/genetics , Signal Transduction , T-Lymphocytes, Regulatory/cytology
15.
Science ; 350(6263): 985-90, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26494174

ABSTRACT

The immune system plays an important role in regulating tumor growth and metastasis. Classical monocytes promote tumorigenesis and cancer metastasis, but how nonclassical "patrolling" monocytes (PMo) interact with tumors is unknown. Here we show that PMo are enriched in the microvasculature of the lung and reduce tumor metastasis to lung in multiple mouse metastatic tumor models. Nr4a1-deficient mice, which specifically lack PMo, showed increased lung metastasis in vivo. Transfer of Nr4a1-proficient PMo into Nr4a1-deficient mice prevented tumor invasion in the lung. PMo established early interactions with metastasizing tumor cells, scavenged tumor material from the lung vasculature, and promoted natural killer cell recruitment and activation. Thus, PMo contribute to cancer immunosurveillance and may be targets for cancer immunotherapy.


Subject(s)
Immunologic Surveillance/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Monocytes/immunology , Animals , Immunotherapy/methods , Killer Cells, Natural/immunology , Lung Neoplasms/therapy , Mice , Mice, Mutant Strains , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms, Experimental/immunology , Neoplasms, Experimental/secondary , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
16.
J Immunol ; 195(5): 2157-67, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26232430

ABSTRACT

Cardif, also known as IPS-1, VISA, and MAVS, is an intracellular adaptor protein that functions downstream of the retinoic acid-inducible gene I family of pattern recognition receptors. Cardif is required for the production of type I IFNs and other inflammatory cytokines after retinoic acid-inducible gene I-like receptors recognize intracellular antigenic RNA. Studies have recently shown that Cardif may have other roles in the immune system in addition to its role in viral immunity. In this study, we find that the absence of Cardif alters normal NK cell development and maturation. Cardif(-/-) mice have a 35% loss of mature CD27(-)CD11b(+) NK cells in the periphery. In addition, Cardif(-/-) NK cells have altered surface marker expression, lower cytotoxicity, decreased intracellular STAT1 levels, increased apoptosis, and decreased proliferation compared with wild-type NK cells. Mixed chimeric mice revealed that the defective maturation and increased apoptotic rate of peripheral Cardif(-/-) NK cells is cell intrinsic. However, Cardif(-/-) mice showed enhanced control of mouse CMV (a DNA ß-herpesvirus) by NK cells, commensurate with increased activation and IFN-γ production by these immature NK cell subsets. These results indicate that the skewed differentiation and altered STAT expression of Cardif(-/-) NK cells can result in their hyperresponsiveness in some settings and support recent findings that Cardif-dependent signaling can regulate aspects of immune cell development and/or function distinct from its well-characterized role in mediating cell-intrinsic defense to RNA viruses.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Apoptosis/immunology , Cell Differentiation/immunology , Cell Proliferation , Killer Cells, Natural/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/genetics , Blotting, Western , Cell Differentiation/genetics , Cells, Cultured , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , Female , Flow Cytometry , Herpesviridae Infections/genetics , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Killer Cells, Natural/metabolism , Liver/immunology , Liver/metabolism , Lymphocyte Count , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/immunology , Muromegalovirus/physiology , NIH 3T3 Cells , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , Spleen/immunology , Spleen/metabolism
17.
Sci Rep ; 5: 10055, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26091486

ABSTRACT

Tissue macrophages function to maintain homeostasis and regulate immune responses. While tissue macrophages derive from one of a small number of progenitor programs, the transcriptional requirements for site-specific macrophage subset development are more complex. We have identified a new tissue macrophage subset in the thymus and have discovered that its development is dependent on transcription factor NR4A1. Functionally, we find that NR4A1-dependent macrophages are critically important for clearance of apoptotic thymocytes. These macrophages are largely reduced or absent in mice lacking NR4A1, and Nr4a1-deficient mice have impaired thymocyte engulfment and clearance. Thus, NR4A1 functions as a master transcription factor for the development of this novel thymus-specific macrophage subset.


Subject(s)
Apoptosis/immunology , Macrophages/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Thymocytes/immunology , Thymus Gland/immunology , Animals , Apoptosis/genetics , Macrophages/cytology , Mice , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Thymocytes/cytology , Thymus Gland/cytology
18.
Sci Rep ; 5: 9059, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25762306

ABSTRACT

The NR4A nuclear receptor family member Nr4a1 is strongly induced in thymocytes undergoing selection, and has been shown to control the development of Treg cells; however the role of Nr4a1 in CD8(+) T cells remains undefined. Here we report a novel role for Nr4a1 in regulating the development and frequency of CD8(+) T cells through direct transcriptional control of Runx3. We discovered that Nr4a1 recruits the corepressor, CoREST to suppress Runx3 expression in CD8(+) T cells. Loss of Nr4a1 results in increased Runx3 expression in thymocytes which consequently causes a 2-fold increase in the frequency and total number of intrathymic and peripheral CD8(+) T cells. Our findings establish Nr4a1 as a novel and critical player in the regulation of CD8 T cell development through the direct suppression of Runx3.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Gene Expression Regulation , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Transcription, Genetic , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Co-Repressor Proteins , Down-Regulation , Lymphocyte Count , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Protein Binding , Repressor Proteins/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Transplantation Chimera
19.
Nat Commun ; 6: 6354, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25724068

ABSTRACT

ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here we demonstrate a role of ABCG1 as a mediator of tumour immunity. Abcg1(-/-) mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumour growth in Abcg1(-/-) mice is myeloid cell intrinsic and is associated with a phenotypic shift of the macrophages from a tumour-promoting M2 to a tumour-fighting M1 within the tumour. Abcg1(-/-) macrophages exhibit an intrinsic bias towards M1 polarization with increased NF-κB activation and direct cytotoxicity for tumour cells in vitro. Overall, our study demonstrates that the absence of ABCG1 inhibits tumour growth through modulation of macrophage function within the tumour, and illustrates a link between cholesterol homeostasis and cancer.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Carcinoma/immunology , Cholesterol/metabolism , Homeostasis/physiology , Lipoproteins/metabolism , Macrophages/immunology , Melanoma/immunology , Urinary Bladder Neoplasms/immunology , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/genetics , Animals , Carcinoma/physiopathology , Cell Line, Tumor , Flow Cytometry , Fluorescence , Lipoproteins/genetics , Macrophages/cytology , Melanoma/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Urinary Bladder Neoplasms/physiopathology
20.
Atherosclerosis ; 234(2): 265-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24704628

ABSTRACT

OBJECTIVE: Gammadelta (γδ) T cells are a subset of pro-inflammatory innate-like T lymphocytes that serve as a bridge between innate and adaptive immunity. γδ T cells are highly enriched in cholesterol compared to αß T cells. In this study, we aimed to identify the role of γδ T cells in atherosclerosis, a cholesterol and inflammation-driven disease. METHODS: We found that the percentages of γδ T cells are increased in ApoE(-/-) mice fed a Western diet. We generated TCRδ(-/-)ApoE(-/-) mice and fed them either rodent chow or a Western diet for ten weeks for the assessment of atherosclerosis. RESULTS: The atherosclerotic lesion size in diet-fed TCRδ(-/-)ApoE(-/-) mice was similar to that of diet-fed ApoE(-/-) mice. There were no differences in cytokine production or numbers of αß T cells in aorta of TCRδ(-/-)ApoE(-/-) mice. Plasma lipoprotein profiles were unchanged by the absence of γδ T cells. CONCLUSION: Our data suggest that γδ T cells do not contribute to early atherosclerotic plaque development.


Subject(s)
Aorta/immunology , Aortic Diseases/immunology , Atherosclerosis/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cytokines/blood , Diet, Western , Disease Models, Animal , Disease Progression , Lipids/blood , Male , Mice, Knockout , Plaque, Atherosclerotic , Receptors, Antigen, T-Cell, gamma-delta/deficiency , Receptors, Antigen, T-Cell, gamma-delta/genetics , Risk Factors , T-Lymphocyte Subsets/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...