Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(1): 1169-1178, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31840487

ABSTRACT

The physical properties, packing, morphology, and semiconducting performance of a planar π-conjugated system can be effectively modified by introducing side chains and substituent groups, both of which can be complementary to the π framework in changing the intermolecular association, frontier molecular orbital energy, optical band gap, and others. We herein show that installation of end-capped electron-withdrawing groups (EWGs), such as dicyanovinyl (-DCV), 3-ethylrhodanine (-RD), and 2-(3-oxo-indan-1-ylidene)-malononitrile (-INCN), together with siloxane side chains to the backbones of dithienyldiketopyrrolopyrrole (DPPT), such as DPPT-Si-DCV, DPPT-Si-RD, and DPPT-Si-INCN, can greatly improve its solubility, air stability, and film morphology to serve as an n-channel in thin-film transistor fabrication. The EWGs attached to the DPPT core narrowed the optical band gap (Egopt) and changed the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies (EHOMO and ELUMO), making them suitable for n-channel field-effect transistor (FET) applications. The benefits of introducing siloxane side chains to the DPPT core include enhanced solubility, low crystallization barrier, enantiotropic phase behavior, and much improved FET performance. The DPPT-Si-INCN film displayed low-lying HOMO (-5.82 eV) and LUMO (-4.60 eV) energy levels and an optical band gap as low as 1.22 eV, all of which suggest that this derivative can be quite resistant toward aerial oxidation. Thin films of these derivatives were prepared by the solution-shear method. A comparison of the solution-sheared films indicated that the molecular packing motif of DPPT-Si-INCN film was somehow different from that of DPPT-Si-DCV and DPPT-Si-RD, in which the π-π stacking tended to align orthogonally to the shearing direction. This specific π-π stacking alignment could have an impact on the electron mobility (µe) values in transistors based on the solution-sheared films.

2.
ACS Appl Mater Interfaces ; 10(10): 8869-8876, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29460614

ABSTRACT

Here, two diketopyrrolopyrrole (DPP)-based oligomers, DPP-4T and DPP-6T, are studied to reveal the influences of conjugation length on thin-film morphology and organic field-effect transistor (OFET) performances. PDMS-assisted crystallization in a solvent-annealing chamber is applied to prepare crystal arrays of DPP-4T and DPP-6T to optimize the quality of charge channels for OFET characterizations. To deliver insights into microstructure and morphology of thin films, a characterization procedure for determining molecular packing in thin film and crystallinity of the crystal arrays is presented via grazing incidence wide-angle X-ray scattering, electron diffraction, and lattice simulation software package (Cerius2). With the lattice parameters derived from analyses of grazing incidence wide-angle X-ray scattering (GIWAXS) and electron diffraction (ED), the lattice modeling results indicate that the inferior organic field-effect transistor (OFET) performances of DPP-6T are attributed to longer π-stacking distance. Also, less-ordered molecular arrangement and lower continuity of crystalline domains, both of which are revealed from crystallinity results, lead to lower mobility of DPP-6T. In this case, longer conjugated backbones with more conformational degrees of freedom thus cause inherent crystal defects during the crystal growth process, despite the potential to enhance intermolecular π-orbital overlap. Therefore, to achieve better OFET performance, suitable backbone length makes conjugated oligomers give high intermolecular π-orbital overlap and low density of structural disorder, which are the priorities for constructing good charge channel.

3.
ACS Appl Mater Interfaces ; 9(17): 14967-14973, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28398714

ABSTRACT

Until now, only limited DPP oligomers delivered ambipolar semiconductor characteristics. To develop a facile strategy of preparing ambipolar mono-DPP oligomers, two dithienyl diketopyrrolopyrrole (DPPT) based-conjugated molecules, DPPT-RD and DPPT-DCV, which contain 3-ethylrhodanine (RD) and dicyano-2-vinyl (DCV) end substituents were synthesized. The influences of the -RD end substituents on the molecular properties, solid-state morphology, and OFET performances of the DPPT oligomer were investigated. The UV-vis absorption and CV results showed that the RD end substituents provide the DPPT oligomer suitable EHOMO and ELUMO for hole and electron injection from the Au source-drain electrodes. Moreover, the RD end substituents also improve the crystalline nature of the DPPT oligomer. That is, DPPT-RD can form crystal arrays with good lattice orientation, larger crystalline size, and without polymorphism. With those properties, DPPT-RD thus display ambipolar characteristic with µh and µe reaching 2.16 × 10-2 and 7.27 × 10-2 cm2 V-1 s-1, respectively.

4.
Chem Asian J ; 11(14): 2011-5, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27246179

ABSTRACT

Molecular conformation and the assembly structure determine the spatial arrangements of the constituent units and the functions of a molecule. Although, fullerene hexa-adducts (FHAs) have been known as functional materials with great versatility, their conformational preferences and phase stability remain a complicate issue. By choosing bithiophene (T2 ) and dodecyl bithiophene (C12 T2 ) as the peripheral units of FHA, and using microscopic, scattering and diffraction characterizations, our study reveals how the intramolecular interaction and environmental stimulus affects the conformational preferences and phase stability of FHAs.

5.
Chem Sci ; 7(4): 2768-2774, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-28660054

ABSTRACT

A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C60), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile (TPA-C60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C60-C60 interactions and the ordered phase could not be reformed from the TPA-C60 melt. Oriented crystal arrays of TPA-C60 , which contain flat-on TPA/C60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C60 delivered ambipolar and balanced charge-transport characteristics with an average µe of 2.11 × 10-4 cm2 V-1 s-1 and µh of 3.37 × 10-4 cm2 V-1 s-1. The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C60 revealed from electron diffraction analyses.

SELECTION OF CITATIONS
SEARCH DETAIL