Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747713

ABSTRACT

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Subject(s)
Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
2.
Food Chem Toxicol ; 175: 113753, 2023 May.
Article in English | MEDLINE | ID: mdl-36997053

ABSTRACT

Acrylamide (ACR) is an important chemical raw material for wastewater treatment, paper industry and textile industry, which is widely exposed from occupational, environmental and dietary situation. ACR has neurotoxicity, genotoxicity, potential carcinogenicity and reproductive toxicity. Recent study indicates that ACR affected oocyte maturation quality. In the present study, we reported the effects of ACR exposure on zygotic genome activation (ZGA) in embryos and its related mechanism. Our results showed that ACR treatment caused 2-cell arrest in mouse embryos, indicating the failure of ZGA, which was confirmed by decreased global transcription levels and aberrant expression of ZGA-related and maternal factors. We found that histone modifications such as H3K9me3, H3K27me3 and H3K27ac levels were altered, and this might be due to the occurrence of DNA damage, showing with positive γ-H2A.X signal. Moreover, mitochondrial dysfunction and high levels of ROS were detected in ACR treated embryos, indicating that ACR induced oxidative stress, and this might further cause abnormal distribution of endoplasmic reticulum, Golgi apparatus and lysosomes. In conclusion, our results indicated that ACR exposure disrupted ZGA by inducing mitochondria-based oxidative stress, which further caused DNA damage, aberrant histone modifications and organelles in mouse embryos.


Subject(s)
Acrylamide , Zygote , Mice , Animals , Acrylamide/metabolism , Zygote/metabolism , Oxidative Stress , Protein Processing, Post-Translational , DNA Damage
SELECTION OF CITATIONS
SEARCH DETAIL
...