Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 51(16): 3294-304, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22695563

ABSTRACT

Phase compression is used to suppress the on-axis zero-order diffracted (ZOD) beam from a pixelated phase-only spatial light modulator (SLM) by a simple modification to the computer generated hologram (CGH) loaded onto the SLM. After CGH design, the phase of each SLM element is identically compressed by multiplying by a constant scale factor and rotated on the complex unit-circle to produce a cancellation beam that destructively interferes with the ZOD beam. Experiments achieved a factor of 3 reduction of the ZOD beam using two different liquid-crystal SLMs. Numerical simulation analyzed the reconstructed image quality and diffraction efficiency versus degree of phase compression and showed that phase compression resulted in little image degradation or power loss.

2.
Phys Rev Lett ; 102(21): 213902, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19519107

ABSTRACT

We demonstrate control of the carrier-envelope phase of ultrashort periodic waveforms that are synthesized from a Raman-generated optical frequency comb. We generated the comb by adiabatically driving a molecular vibrational coherence with a beam at a fundamental frequency plus its second harmonic. Heterodyne measurements show that full interpulse phase locking of the comb components is realized. The results set the stage for the synthesis of periodic arbitrary waveforms in the femtosecond and subfemtosecond regimes with full control.

3.
Dis Aquat Organ ; 73(1): 13-22, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17240748

ABSTRACT

Requiring only simple heating devices, isothermal nucleic acid-based amplification (NASBA) is a potential detection platform to be developed for on-site diagnosis of aquaculture pathogens. In this report, an NASBA assay has been developed for the Taura syndrome virus (TSV), one of the most devastating RNA virus pathogens for several penaeid shrimp species. The NASBA amplicons were detected by agarose gel electrophoresis and confirmed by Northern-blotting and dot-blotting analysis, using a biotinylated TSV-specific primer. The sensitivity of the TSV NASBA coupled with dot-blotting detection was approximately 5-fold less sensitive than that of the commercially available RT-nested, PCR-based IQ2000 TSV Detection and Prevention System that was also confirmed to be more sensitive than the RT-PCR-based TSV detection protocol recommended by the OIE (Office International des Epizooties). The specificity of the TSV NASBA reaction was substantiated by the results that RNA of non-target viruses did not generate any signals. Furthermore, a simple colorimetric microtiter plate assay employing TSV-specific capture and detection primers was developed as a simple alternative approach for the detection of NASBA amplicons. Taken together, the combination of the isothermal NASBA and colorimetric solid phase-based assays should allow sensitive, straightforward, and speedy on-site detection of TSV.


Subject(s)
Aquaculture/methods , Nucleic Acid Amplification Techniques/veterinary , Penaeidae/virology , RNA Viruses/isolation & purification , Animals , Blotting, Northern/veterinary , Colorimetry/veterinary , DNA Probes/chemistry , Electrophoresis, Agar Gel/veterinary , Immunoblotting/veterinary , RNA Viruses/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sensitivity and Specificity , Taiwan , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...