Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chemistry ; 29(69): e202302680, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37815495

ABSTRACT

Electromagnetic pollution could harm sensitive electronic equipment due to the rising use of electronic devices and communication infrastructure. The supercapacitor's electrochemical performance should be enhanced, and electromagnetic damage should be prevented. This study proposes NiCo2 O4 /CF composites for supercapacitors and microwave absorption. They are made by combining hydrothermal and annealing processes. Dense NiCo2 O4 nanoneedles were uniformly grown on the outer layer of carbon foam (CF) as a growth skeleton, preventing the agglomeration of NiCo2 O4 . The composite had a specific capacitance of 537.5 F/g at 1 A/g. When the current density was set to 1 A/g, the supercapacitor that used NiCo2 O4 /CF as the cathode had a specific capacitance of 70.7 F/g, and when the current density was increased to 10 A/g, the original specific capacitance of 87.2 % could still be maintained after 5000 charge-discharge cycles. At a power density of 3695.5 W/kg, an energy density of 22.1 Wh/kg could be maintained. Furthermore, we performed a microwave absorption test and determined its reflection loss curve for various sample thicknesses. Recombination enhanced the composite material's microwave absorption capability by greatly reducing the dielectric loss and the magnetic loss.

2.
Inorg Chem ; 61(38): 15287-15301, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36083865

ABSTRACT

As a novel electrode material for energy storage, metal-organic frameworks (MOFs) emerge with plenty of merits and certain drawbacks in the field of supercapacitors. Nevertheless, most MOFs synthesized for the moment are faced with dimension/distribution issues and dissatisfactory electrical conductivity. Hence, in this paper, NiCo-MOF was successfully fabricated by applying a one-step solvothermal method, from which NiCo-MOF-3 presents an optimal electrochemical performance compared to other NiCo-MOFs and Ni/Co-MOF. Owing to its unique three-dimensional spherical raspberry structure, NiCo-MOF-3 demonstrates an available internal resistance and electron transfer resistance to ameliorate electrical energy storage, exhibiting an excellent mass specific capacitance of 639.8 F/g at 1 A/g. Then, a flexible quasi-solid-state asymmetric supercapacitor was assembled with NiCo-MOF-3 as the positive electrode. The introduction of K3[Fe(CN)6] and glycerin in the gel electrolyte facilitates the maximum energy density of 66.3 Wh/kg of the device, with a corresponding power density reaching its maximum of 12,047 W/kg. The device's apparent energy density, excellent flexibility, and temperature resistance reveal that our method to prepare supercapacitor electrode material possesses more advantages than those in the former literature.

SELECTION OF CITATIONS
SEARCH DETAIL