Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Nature ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39236747

ABSTRACT

Two-terminal monolithic perovskite-silicon tandem solar cells demonstrate huge advantages in power conversion efficiency (PCE) compared to their respective single-junction counterparts1,2. However, suppressing interfacial recombination at the wide-bandgap perovskite/electron transport layer interface, without compromising its superior charge transport performance, remains a significant challenge for perovskite-silicon tandem cells3,4. By exploiting the nanoscale discretely distributed LiF ultrathin layer followed by an additional deposition of diammonium diiodide molecule, we have devised a bilayer intertwined passivation strategy that combines efficient electron extraction with further suppression of nonradiative recombination. We constructed perovskite-silicon tandem devices on double-side textured Czochralski (CZ)-based silicon heterojunction cell, which featured a mildly-textured front surface and a heavily-textured rear surface, leading to simultaneously enhanced photocurrent and uncompromised rear passivation. The resulting perovskite-silicon tandem achieved an independently certified stabilized PCE of 33.89%, accompanied by an impressive fill factor (FF) of 83.0% and an open-circuit voltage (Voc) of nearly 1.97 volts. To our knowledge, this represents the first reported certified efficiency of a two-junction tandem solar cell exceeding the single-junction Shockley-Queisser limit of 33.7%.

2.
FASEB J ; 38(17): e70011, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39250278

ABSTRACT

In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-ß expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-ß signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.


Subject(s)
Bone Morphogenetic Protein 2 , Cell Differentiation , Mesenchymal Stem Cells , Mitophagy , Osteogenesis , Signal Transduction , Transforming Growth Factor beta , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Animals , Mitophagy/physiology , Mice , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Transforming Growth Factor beta/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cells, Cultured , Male
3.
Food Chem ; 461: 140907, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173266

ABSTRACT

Tartary buckwheat sprouts are highly valued by consumers for their superior nutritional content. Ionic titanium (Ti) has been shown to enhance crop growth and improve nutritional quality. However, there is limited research on the impact of ionic Ti on the nutritional quality of Tartary buckwheat sprouts. This study cultivated Tartary buckwheat sprouts with ionic Ti and found that the high concentration of ionic Ti significantly increased the contents of chlorophyll a, chlorophyll b, and carotenoids (increased by 25.5%, 27.57%, and 15.11%, respectively). The lower concentration of ionic Ti has a higher accumulation of total flavonoids and total polyphenols. Metabolomics analysis by LC-MS revealed 589 differentially expressed metabolites and 54 significantly different metabolites, enriching 82 metabolic pathways, especially including amino acid biosynthesis and flavonoid biosynthesis. This study shows that ionic Ti can promote the growth of Tartary buckwheat sprouts, improve nutritional quality, and have huge development potential in food production.

4.
Clin Lung Cancer ; 25(6): e268-e276.e1, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997934

ABSTRACT

INTRODUCTION: Stereotactic body radiation therapy (SBRT) is a treatment for patients with early-stage non-small cell lung cancer (ES-NSCLC). Surveillance guidelines vary after treatment. While patients are more likely to locally recur within 2 years of treatment, there remains a paucity of data on the benefit of frequent and long-term surveillance. We evaluated a cohort of NSCLC patients to evaluate surveillance patterns and outcomes. MATERIALS AND METHODS: Patients with ES-NSCLC treated with SBRT were retrospectively evaluated. Imaging was reviewed after SBRT for evidence of recurrence or new malignancy. The median scan interval (MSI) was calculated as the median number of months between surveillance scans. The MSI between patients with or without new disease was compared by t-test. New disease development and survival between patients with =T2 disease and with or without prior malignancy was compared using χ², Kaplan-Meier analysis, and Gray's test. RESULTS: A cohort of 168 patients with median follow up of 23.4 months met criteria for review with 50% developing new disease. MSI did not differ between patients with or without new disease. Patients with >=cT2 tumors had worse overall survival and trended towards higher incidence of new disease. New disease continued to occur, even 5 years after treatment. CONCLUSION: Increased scan frequency did not increase detection of new disease. Patients continued to fail 5 years after treatment. Larger tumors trended toward more frequent failures and those patients experienced worse OS. Surveillance guidelines should be optimized to prevent over surveillance after treatment and to continue long-term surveillance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoplasm Recurrence, Local , Neoplasm Staging , Radiosurgery , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Radiosurgery/methods , Male , Female , Aged , Retrospective Studies , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Middle Aged , Follow-Up Studies , Aged, 80 and over , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/epidemiology , Practice Guidelines as Topic , Survival Rate , Adult
5.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993144

ABSTRACT

Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.

6.
Water Sci Technol ; 90(1): 32-44, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007305

ABSTRACT

Developing a feasible and low-cost strategy for the recovery of calcium fluoride efficiently from fluoride-containing wastewater is very essential for the recycle of fluoride resources. Herein, a modified lime precipitation method was employed to recover CaF2 from fluorinated wastewater using a special icy lime solution. Intriguingly, the highest F- removal was greater than 95% under the optimal condition, leaving a fluoride concentration from 200 to 8.64 mg/L, while the lime dosage was much lower than that of industry. Importantly, spherical-shaped CaF2 particles with a 93.47% purity and size smaller than 600 nm were recovered, which has a high potential for the production of hydrofluoric acid. Besides, the precipitation was significantly affected by Ca/F molar ratio, stirring time, temperature, and solution pH. Furthermore, the thermodynamics and kinetics were investigated in detail to reveal the crystallization process. As a result, the defluorination reaction followed the pseudo-second order reaction kinetics model. Also, CO2 in the air adversely influenced the CaF2 purity. Based on this facile method, a high lime utilization efficiency was applied to defluorination, which contributed to protecting the environment and saving costs. This study, therefore, provides a feasible approach for the green recovery of fluorine resources and has significance for related research.


Subject(s)
Calcium Compounds , Calcium Fluoride , Fluorine , Oxides , Wastewater , Calcium Fluoride/chemistry , Wastewater/chemistry , Fluorine/chemistry , Calcium Compounds/chemistry , Oxides/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Fluorides/chemistry
7.
Comput Struct Biotechnol J ; 23: 2637-2647, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39021584

ABSTRACT

Molecular phylogenetic research has relied on the analysis of the coding sequences by genes or of the amino acid sequences by the encoded proteins. Enumerating the numbers of mismatches, being indicators of mutation, has been central to pertinent algorithms. Specific amino acids possess quantifiable characteristics that enable the conversion from "words" (strings of letters denoting amino acids or bases) to "waves" (strings of quantitative values representing the physico-chemical properties) or to matrices (coordinates representing the positions in a comprehensive property space). The application of such numerical representations to evolutionary analysis takes into account not only the occurrence of mutations but also their properties as influences that drive speciation, because selective pressures favor certain mutations over others, and this predilection is represented in the characteristics of the incorporated amino acids (it is not born out solely by the mismatches). Besides being more discriminating sources for tree-generating algorithms than match/mismatch, the number strings can be examined for overall similarity with average mutual information, autocorrelation, and fractal dimension. Bivariate wavelet analysis aids in distinguishing hypermutable versus conserved domains of the protein. The matrix depiction is readily subjected to comparisons of distances, and it allows the generation of heat maps or graphs. This analysis preserves the accepted taxa order where tree construction with standard approaches yields conflicting results (for the protein S100A6). It also aids hypothesis generation about the origin of mitochondrial proteins. These analytical algorithms have been automated in R and are applicable to various processes that are describable in matrix format.

8.
Oral Oncol ; 154: 106870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823171

ABSTRACT

OBJECTIVE(S): To assess the influence of treatment package time (TPT) on overall survival (OS) and event free survival (EFS) in oral cavity cancer (OCC) patients treated with surgery and adjuvant radiation therapy (RT) with or without concurrent chemotherapy (CHT). MATERIALS/METHODS: 354 adult OCC patients treated at a single, high-volume center between 2012-2022 with various pathologic risk features were included. TPT was defined as days from surgery to RT completion. Kaplan-Meier estimates, log-rank p-values, univariable (UVA) and multivariable (MVA) Cox regression analyses were performed to determine the impact of TPT on OS and EFS, and the optimal TPT cutoff. RESULTS: The optimal TPT cutoff was 105 days. TPT < 105 days was significantly associated with improved OS and EFS (p = 0.002 and p = 0.027, respectively) compared to TPT ≥ 105 days. On UVA, factors significantly associated with OS were TPT < 105 days, former/current smoker status, pathologic stage IV, positive perineural invasion (PNI), and extranodal extension (ENE) (all p < 0.05). On MVA for OS, TPT < 105 days, former/current smoker status, pathologic stage IV, and positive PNI (all p < 0.05) remained significant. Factors significantly associated with EFS on UVA were TPT < 105 days, former/current smoker status, pathologic stage IV, positive PNI or ENE, and concurrent CHT (all p < 0.05). On MVA, TPT < 105 days, pathologic stage IV, and positive PNI (all p < 0.05) remained significant. CONCLUSIONS: In a large, homogenous cohort of OCCs, optimal TPT was <105 days, with TPT ≥ 105 days significantly associated with worse OS and EFS. Multidisciplinary coordination should analyze factors potentially contributing to treatment delay.


Subject(s)
Mouth Neoplasms , Humans , Mouth Neoplasms/therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/mortality , Mouth Neoplasms/radiotherapy , Male , Female , Middle Aged , Aged , Adult , Treatment Outcome , Aged, 80 and over , Retrospective Studies , Radiotherapy, Adjuvant
9.
J Biochem Mol Toxicol ; 38(6): e23746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769694

ABSTRACT

To identify the role of enterotoxin-related genes in colorectal cancer (CRC) development and progression. Upregulated differentially expressed genes shared by three out of five Gene Expression Omnibus (GEO) data sets were included to screen the key enterotoxin-induced oncogenes (EIOGs) according to criteria oncogene definition, enrichment, and protein-protein interaction (PPI) network analysis, followed by prognosis survival, immune infiltration, and protential drugs analyses was performed via integration of RNA-sequencing data and The Cancer Genome Atlas-derived clinical profiles. We screened nine common key EIOGs from at least three GEO data sets. A Cox proportional hazards regression models verified that more alive cases, decreased overall survival, and highest 4-year survival prediction in CRC patients with high-risk score. Protein tyrosine phosphatase receptor type F polypeptide-interacting protein alpha-4 (PPFIA4), STY11, SCN3B, and SPTBN5 were shared in the same PPI network. Immune infiltration results showed that SCN3B and synaptotagmin 11 expression were obviously associated with B cell, macrophage, myeloid dendritic cell, neutrophils, and T cell CD4+ and CD8+ in both colon adenocarcinoma and rectal adenocarcinoma. CHIR-99021, MLN4924, and YK4-279 were identified as the potential drugs for treatment. Finally, upregulated EIOGs genes PPFIA4 and SCN3B were found in colon adenocarcinoma and PPFIA4 and SCN3B were proved to promote cell proliferation and migration in vitro. We demonstrated here that EIOGs promoting a malignancy phenotype was related with poor survival and prognosis in CRC, which might be served as novel therapeutic targets in CRC management.


Subject(s)
Colorectal Neoplasms , Enterotoxins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Protein Interaction Maps
10.
Int Orthop ; 48(8): 2189-2200, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772935

ABSTRACT

PURPOS: To evaluate the clinical efficacy of the Medial Sustain Nail (MSN) for medial comminuted trochanteric fractures fixation in comparison to Proximal Femoral Nail Antirotation (PFNA) through a clinical study. METHODS: A non-inferiority randomized controlled trial was conducted at a single centre between July 2019 and July 2020. Fifty patients diagnosed comminuted trochanteric fractures were randomly assigned to either the MSN group (n = 25) or the PFNA group (n = 25). A total of forty-three patients were included in the final study analysis. The primary outcome measure was Short Form 36 health surgery physical component summary (SF-36 PCS) score. Secondary outcomes included the Oxford Hip Scores (OHS), weight bearing, complication relate to implant and so on. This study was not blined to surgeons, but to patients and data analysts. RESULTS: The MSN demonstrated significantly better functional outcomes as measured by SF-36 PCS and OHS at six months postoperative compared to PFNA (p < 0.05). Union of fractures in the MSN group reached 90.9% at three months after surgery, whereas the PFNA group achieved a union rate of 57.1% (p < 0.05). Furthermore, weight-bearing time of MSN group was earlier than PFNA group (p < 0.05). Additionally, complications related to implant usage were more prevalent in the PFNA group (33.3%) compared to the MSN group (4.5%) (p < 0.05). CONCLUSION: MSN exhibited superior quality of life outcomes compared to PFNA at six months postoperative. This indicates that MSN effectively reconstructs medial femoral support in patients with comminuted trochanteric fractures, which facilitates early weight-bearing and accelerates the recovery process. TRIAL REGISTRATION: Trial registration number: NCT01437176, Date of the trial registration:2011-9-1, Date of commencement of the study:2011-9, Date of enrolment/recruitment of the study subjects:2019-7.


Subject(s)
Bone Nails , Fractures, Comminuted , Hip Fractures , Humans , Female , Hip Fractures/surgery , Male , Aged , Fractures, Comminuted/surgery , Prospective Studies , Aged, 80 and over , Treatment Outcome , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/instrumentation , Fracture Fixation, Intramedullary/adverse effects , Middle Aged
11.
J Colloid Interface Sci ; 663: 947-960, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447408

ABSTRACT

Regulating product selectivity in photocatalytic CO2 reduction to enhance the yield of valuable hydrocarbons remains a formidable challenge because of the diversity of reduction products and the competitive reduction of H2O. Herein, ultrathin Bi2O3/ Co-doped SrBi4Ti4O15 S-scheme photocatalysts (Co-BS) were synthesized using a hydrothermal method. The Bi2O3/Co-doped SrBi4Ti4O15 photocatalyst exhibited significantly higher selectivity for CH4 (62.3 µmolg-1) and CH3OH (54.1 µmolg-1) in CO2 reduction compared with pure SrBi4Ti4O15 (27.2 and 0.8 µmolg-1) and the Bi2O3/SrBi4Ti4O15 S-scheme without Co (30.2 and 0 µmolg-1). The experimental results demonstrated that the inclusion of Co into SrBi4Ti4O15 expanded the range of light absorption and generated an internal electric field between Co-doped SrBi4Ti4O15 and Bi2O3. Density functional theory calculations and other experimental findings confirmed the formation of a new doping energy level in the Bi2O3/SrBi4Ti4O15 S-scheme heterojunction after Co doping. The valence band electrons of Bi2O3/SrBi4Ti4O15 transitioned to the Co-doped level because of the interconversion between Co3+ and Co2+ under the action of the internal electric field. Furthermore, the corresponding characterizations revealed that the adsorption and electron transfer rates of the surface active sites were accelerated after Co doping, enhancing electron involvement in the photocatalytic reaction process. This study presented a metal-doped S-scheme heterojunction approach for CO2 reduction to produce high-value products, enhancing the conversion of solar energy into energy resources.

12.
Front Oncol ; 14: 1344130, 2024.
Article in English | MEDLINE | ID: mdl-38463226

ABSTRACT

Background: The prognostic value of Toll-like receptor 4 (TLR4) in breast cancer remains to be determined. Therefore, this paper aims to conduct a meta-analysis to assess the correlation between TLR4 and clinicopathological indicators as well as survival outcomes in breast cancer. Method: Related literature retrieved from Embase, PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI) and China Wanfang. The search deadline is April 12, 2023. The outcome measures employed in the study comprised hazard ratio (HR), odds ratio (OR), and 95% confidence interval (CI) as effective indices. The data analysis was conducted using Stata 17.0 software. Results: High TLR4 expression was associated with lymph node metastasis (OR=2.077, 95%CI=1.160-3.717, P= 0.014), tumor size (≥2 cm) (OR=2.194, 95%CI= 1.398-3.445, P= 0.001), PR expression (OR = 0.700, 95% CI = 0.505-0.971, P= 0.033), and clinical stage (OR = 3.578, 95%CI= 3.578-5.817, P<0.05), but not with histological grade (95%CI= 0.976-1.735, P= 0.072), ER expression (OR = 1.125, 95% CI = 0.492-2.571,P= 0.781), and HER-2 status (OR = 1.241, 95% CI = 0.733-2.101, P = 0.422). In addition, TLR4 overexpression was an independent prognostic indicator of DFS (HR= 1.480, 95%CI= 1.028- 2.130, p= 0.035) in breast cancer patients, but not related to OS(HR=1.730, 95%CI= 0.979-3.057, P= 0.059). Conclusions: From our main analysis results, high TLR4 expression is associated with lymph node metastasis, larger tumor size (≥2 cm), later clinical stage, negative PR expression and shorter DFS, suggesting poor prognosis in breast cancer patients.

13.
Food Res Int ; 181: 114108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448108

ABSTRACT

Quinoa (Chenopodium quinoa Willd.) microgreens are widely consumed as healthy vegetables around the world. Although soluble dietary fibers exist as the major bioactive macromolecules in quinoa microgreens, their structural characteristics and bioactive properties are still unclear. Therefore, the structural characteristics and bioactive properties of soluble dietary fibers from various quinoa microgreens (QMSDFs) were investigated in this study. The yields of QMSDFs ranged from 38.82 to 52.31 mg/g. Indeed, all QMSDFs were predominantly consisted of complex pectic-polysaccharides, e.g., homogalacturonan (HG) and rhamnogalacturonan I (RG I) pectic domains, with the molecular weights ranged from 2.405 × 104 to 5.538 × 104 Da. In addition, the proportions between RG I and HG pectic domains in all QMSDFs were estimated in the range of 1: 2.34-1: 4.73 (ratio of galacturonic acid/rhamnose). Furthermore, all QMSDFs exhibited marked in vitro antioxidant, antiglycation, prebiotic, and immunoregulatory effects, which may be partially correlated to their low molecular weights and low esterification degrees. These findings are helpful for revealing the structural and biological properties of QMSDFs, which can offer some new insights into further development of quinoa microgreens and related QMSDFs as value-added healthy products.


Subject(s)
Chenopodium quinoa , Antioxidants , Esterification , Health Status , Prebiotics
14.
Cell Tissue Res ; 396(2): 269-281, 2024 May.
Article in English | MEDLINE | ID: mdl-38470494

ABSTRACT

Nonunion is a challenging complication of fractures for the surgeon. Recently the Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum protein retention receptor 2 (KDELR2) has been found that involved in osteogenesis imperfecta. However, the exact mechanism is still unclear. In this study, we used lentivirus infection and mouse fracture model to investigate the role of KDELR2 in osteogenesis. Our results showed that KDELR2 knockdown inhibited the osteogenic differentiation of mBMSCs, whereas KDELR2 overexpression had the opposite effect. Furthermore, the levels of active-ß-catenin and phospho-GSK3ß (Ser9) were upregulated by KDELR2 overexpression and downregulated by KDELR2 knockdown. In the fracture model, mBMSCs overexpressing KDELR2 promoted healing. In conclusion, KDELR2 promotes the osteogenesis of mBMSCs by regulating the GSK3ß/ß-catenin signaling pathway.


Subject(s)
Cell Differentiation , Glycogen Synthase Kinase 3 beta , Mesenchymal Stem Cells , Osteogenesis , beta Catenin , Animals , Mice , beta Catenin/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Glycogen Synthase Kinase 3 beta/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Signal Transduction
15.
Clinics (Sao Paulo) ; 79: 100336, 2024.
Article in English | MEDLINE | ID: mdl-38325020

ABSTRACT

BACKGROUND: Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. METHODS: The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 µg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. RESULTS: XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. CONCLUSION: XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , MicroRNAs , Rats , Animals , Pyroptosis , Lipopolysaccharides , MicroRNAs/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Cytokines
16.
J Hazard Mater ; 467: 133751, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38341884

ABSTRACT

Regulation of peroxymonosulfate (PMS) activation from radical to non-radical pathways is an emerging focus of advanced oxidation processes (AOPs) due to its superiority of anti-interference to complex wastewater. However, the detailed correlation mechanism between the defect structure of the catalyst and the regulation of radicals/non-radicals remains unclear. Herein, natural chalcopyrite (CuFeS2) with different levels of S vacancies created by a simple NaBH4 reduction process was employed to explore the above-mentioned underlying mechanism for constructing high efficiency and low cost of catalyst towards AOPs. With the assistance of simulated solar light, S-deficient chalcopyrite (Sv-NCP) exhibited prominent performance for PMS activation. More interestingly, the different degrees of S vacancies regulated the active species from radicals to non-radical 1O2, thus showing excellent purification of complex wastewater as well as actual pharmaceutical wastewater. Mechanistic analysis reveals that PMS tends to loss electrons on S vacancies sites and is dissociated into 1O2 rather than ·OH/SO4·- due to electron deficiency. Meanwhile, the improved adsorption performance makes the degradation sites of pollutants change from solution to surface. Most importantly, Sv-NCP presented excellent detoxication for antibiotic wastewater due to the high selectivity of 1O2. This work provides novel insights into the regulation of active species in Fenton-like reactions via defect engineering for high efficiency of pollutant degradation.

17.
Biochem Genet ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38244157

ABSTRACT

Enterotoxigenic Bacteroides fragilis (ETBF) is believed to promote the malignant process of colorectal cancer (CRC), but the underlying molecular mechanism still needs to be revealed. CRC cells (SW480 and HCT-116) were treated with ETBF strain. Cell proliferation, invasion and, migration were evaluated by cell counting kit 8 assay, EdU assay, colony formation assay, transwell assay, and wound healing assay. Protein expression was analyzed by western blot. MicroRNA (miR)-139-3p and histone deacetylase 3 (HDAC3) expression levels in tissues and cells were determined by qRT-PCR. Xenograft tumor model was conducted to evaluate the effect of miR-139-3p on CRC tumor growth. ETBF treatment could promote CRC cell proliferation, invasion and migration. MiR-139-3p expression was decreased by ETBF, and its overexpression reversed the effect of ETBF on CRC cell progression. HDAC3 negatively regulated miR-139-3p expression, and its overexpression facilitated CRC cell behaviors via reducing miR-139-3p expression. Moreover, HDAC3 expression was increased by ETBF, and its knockdown also abolished ETBF-mediated CRC cell progression. Additionally, miR-139-3p overexpression could reduce CRC tumor growth in vivo. ETBF aggravated CRC proliferation and metastasis via the regulation of HDAC3/miR-139-3p axis. The discovery of ETBF/HDAC3/miR-139-3p axis may provide a new direction for CRC treatment.

18.
J Shoulder Elbow Surg ; 33(4): 948-958, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182024

ABSTRACT

BACKGROUND: Heterotopic ossification (HO) is a common complication after elbow fracture surgery and can lead to severe upper extremity disability. The radiographic localization of postoperative HO has been reported previously. However, there is no literature examining the distribution of postoperative HO at the three-dimensional (3D) level. This study aimed to investigate 1) the distribution characteristics of postoperative HO and 2) the possible risk factors affecting the severity of postoperative HO at a 3D level. METHODS: A retrospective review was conducted of patients who presented to our institution with HO secondary to elbow fracture between 13 January 2020 and 16 February 2023. Computed tomography scans of 56 elbows before elbow release surgery were reconstructed in 3D. HO was identified using density thresholds combined with manual identification and segmentation. The elbow joint and HO were divided into six regions according to three planes: the transepicondylar plane, the lateral ridge of the trochlear plane, and the radiocapitellar joint and coronoid facet plane. The differences in the volume of regional HO associated with different initial injuries were analyzed. RESULTS: Postoperative HO was predominantly present in the medial aspect of the capsule in 52 patients (93%), in the lateral aspect of the capsule in 45 patients (80%), in the medial supracondylar in 32 patients (57%), and in the lateral supracondylar, radial head, and ulnar region in the same number of 28 patients (50%). The median and interquartile range volume of total postoperative HO was 1683 (777-4894) mm3. The median and interquartile range volume of regional postoperative HO were: 584 (121-1454) mm3 at medial aspect of capsule, 207 (5-568) mm3 at lateral aspect of capsule, 25 (0-449) mm3 at medial supracondylar, 1 (0-288) at lateral supracondylar, 2 (0-478) at proximal radius and 7 (0-203) mm3 at the proximal ulna. In the subgroups with Injury Severity Score > or = 16, Gustilo-Anderson II, normal uric acid levels, elevated alkaline phosphatase, and body mass index > or = 24, the median HO volume exceeds that of the respective control groups. CONCLUSION: The medial aspect of the capsule was the area with the highest frequency and median volume of postoperative HO among all initial elbow injury types. Patients with higher Gustilo-Anderson grade, Injury Severity Score, alkaline phosphatase or Body Mass Index had higher median volume of postoperative HO.


Subject(s)
Arm Injuries , Elbow Fractures , Elbow Injuries , Elbow Joint , Ossification, Heterotopic , Humans , Elbow Joint/diagnostic imaging , Elbow Joint/surgery , Elbow , Prevalence , Alkaline Phosphatase , Arm Injuries/complications , Retrospective Studies , Ossification, Heterotopic/diagnostic imaging , Ossification, Heterotopic/epidemiology , Ossification, Heterotopic/etiology , Range of Motion, Articular , Treatment Outcome
19.
Autophagy ; 20(1): 4-14, 2024 01.
Article in English | MEDLINE | ID: mdl-37594406

ABSTRACT

Macroautophagy/autophagy, is widely recognized for its crucial role in enabling cell survival and maintaining cellular energy homeostasis during starvation or energy stress. Its regulation is intricately linked to cellular energy status. In this review, covering yeast, mammals, and plants, we aim to provide a comprehensive overview of the understanding of the roles and mechanisms of carbon- or glucose-deprivation related autophagy, showing how cells effectively respond to such challenges for survival. Further investigation is needed to determine the specific degraded substrates by autophagy during glucose or energy deprivation and the diverse roles and mechanisms during varying durations of energy starvation.Abbreviations: ADP: adenosine diphosphate; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATP: adenosine triphosphate; ER: endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD: glucose deprivation; GFP: green fluorescent protein; GTPases: guanosine triphosphatases; HK2: hexokinase 2; K phaffii: Komagataella phaffii; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein1 light chain 3; MAPK: mitogen-activated protein kinase; Mec1: mitosis entry checkpoint 1; MTOR: mechanistic target of rapamycin kinase; NAD (+): nicotinamide adenine dinucleotide; OGD: oxygen and glucose deprivation; PAS: phagophore assembly site; PCD: programmed cell death; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; S. cerevisiae: Saccharomyces cerevisiae; SIRT1: sirtuin 1; Snf1: sucrose non-fermenting 1; STK11/LKB1: serine/threonine kinase 11; TFEB: transcription factor EB; TORC1: target of rapamycin complex 1; ULK1: unc-51 like kinase 1; Vps27: vacuolar protein sorting 27; Vps4: vacuolar protein sorting 4.


Subject(s)
Autophagy , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/metabolism , Protein Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Energy Metabolism , AMP-Activated Protein Kinases/metabolism , Glucose , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL