Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
J Environ Sci (China) ; 144: 15-25, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802227

ABSTRACT

Zeolite imidazole frameworks (ZIFs), a class of the metal organic framework, have been extensively studied in environmental applications. However, their environmental fate and potential ecological impact on plants remain unknown. Here, we investigated the phytotoxicity, transformation, and bioaccumulation processes of two typical ZIFs (ZIF-8 and ZIF-67) in rice (Oryza sativa L.) under hydroponic conditions. ZIF-8 and ZIF-67 in the concentration of 50 mg/L decreased root and shoot dry weight maximally by 55.2% and 27.5%, 53.5% and 37.5%, respectively. The scanning electron microscopy (SEM) imaging combined with X-ray diffraction (XRD) patterns revealed that ZIFs on the root surface gradually collapsed and transformed into nanosheets with increasing cultivation time. The fluorescein isothiocyanate (FITC) labeled ZIFs were applied to trace the uptake and translocation of ZIFs in rice. The results demonstrated that the transformed ZIFs were mainly distributed in the intercellular spaces of rice root, while they cannot be transported to culms and leaves. Even so, the Co and Zn contents of rice roots and shoots in the ZIFs treated groups were increased by 1145% and 1259%, 145% and 259%, respectively, compared with the control groups. These findings suggested that the phytotoxicity of ZIFs are primarily attributed to the transformed ZIFs and to a less extent, the metal ions and their ligands, and they were internalized by rice root and increased the Co and Zn contents of shoots. This study reported the transformation of ZIFs and their biological effectiveness in rice, highlighting the potential environmental hazards and risks of ZIFs to crop plants.


Subject(s)
Bioaccumulation , Imidazoles , Oryza , Seedlings , Soil Pollutants , Zeolites , Oryza/drug effects , Oryza/metabolism , Imidazoles/toxicity , Seedlings/drug effects , Seedlings/metabolism , Soil Pollutants/toxicity , Metal-Organic Frameworks
2.
BMC Public Health ; 24(1): 1339, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760724

ABSTRACT

INTRODUCTION: Stroke is a life-threatening condition that causes a major medical burden globally. The currently used methods for the prevention or prediction of stroke have certain limitations. Exposure to tobacco in early life, including smoking during adolescence and maternal smoking during pregnancy, can affect adolescent development and lead to several negative outcomes. However, the association between early-life tobacco exposure and stroke is not known. METHODS: In this prospective cohort study, for the analyses involving exposure to maternal smoking during pregnancy and age of smoking initiation, we included 304,984 and 342,893 participants, respectively., respectively from the UK Biobank. Cox proportional hazard regression model and subgroup analyses were performed to investigate the association between early-life tobacco exposure and stroke. Mediation analyses were performed to identify the mediating role of biological aging in the association between early tobacco exposure and stroke. RESULTS: Compared with participants whose mothers did not smoke during pregnancy, participants whose mothers smoked during pregnancy showed an 11% increased risk of stroke (HR: 1.11, 95% CI: 1.05-1.18, P < 0.001). Compared with participants who never smoked, participants who smoked during adulthood, adolescence and childhood showed a 22%, 24%, and 38% increased risk of stroke during their adulthood, respectively. Mediation analysis indicated that early-life tobacco exposure can cause stroke by increasing biological aging. CONCLUSION: This study reveals that exposure to tobacco during early life is associated with an increased risk of experiencing a stroke, and increased biological aging can be the underlying mechanism.


Subject(s)
Biological Specimen Banks , Stroke , Tobacco Smoke Pollution , Humans , Female , Prospective Studies , United Kingdom/epidemiology , Male , Stroke/epidemiology , Stroke/etiology , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/statistics & numerical data , Pregnancy , Adult , Middle Aged , Prenatal Exposure Delayed Effects/epidemiology , Risk Factors , Proportional Hazards Models , Adolescent , Aged , UK Biobank
3.
Plant Physiol Biochem ; 211: 108701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723489

ABSTRACT

Graphitic carbon nitride (g-C3N4) is a promising candidate for heavy metal remediation, primarily composed of carbon (C) and nitrogen (N). It has been demonstrated that g-C3N4 adjusts rhizosphere physicochemical conditions, especially N conditions, alleviating the absorption and accumulation of Cadmium (Cd) by soybeans. However, the mechanisms by which g-C3N4 induces N alterations to mitigates plant uptake of Cd remain unclear. This study investigated the impact of g-C3N4-mediated changes in N conditions on the accumulation of Cd by soybeans using pot experiments. It also explored the microbiological mechanisms underlying alterations in soybean rhizospheric N cycling induced by g-C3N4. It was found that g-C3N4 significantly increased N content in the soybean rhizosphere (p < 0.05), particularly in terms of available nitrogen (AN) of nitrate and ammonium. Plants absorbed more ammonium nitrogen (NH4⁺-N), the content of which in the roots showed a significant negative correlation with Cd concentration in plant (p < 0.05). Additionally, g-C3N4 significantly affected rhizospheric functional genes associated with N cycling (p < 0.05) by increasing the ratio of the N-fixation functional gene nifH and decreasing the ratios of functional genes amoA and nxrA involved in nitrification. This enhances soybean's N-fixing potential and suppresses denitrification potential in the rhizosphere, preserving NH4⁺-N. Niastella, Flavisolibacter, Opitutus and Pirellula may play a crucial role in the N fixation and preservation process. In summary, the utilization of g-C3N4 offers a novel approach to ensure safe crop production in Cd-contaminated soils. The results of this study provide valuable data and a theoretical foundation for the remediation of Cd polluted soils.


Subject(s)
Cadmium , Glycine max , Graphite , Nitrogen , Rhizosphere , Glycine max/metabolism , Glycine max/drug effects , Glycine max/microbiology , Cadmium/toxicity , Cadmium/metabolism , Nitrogen/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Nitrogen Compounds/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/microbiology
4.
J Neuroinflammation ; 21(1): 123, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725082

ABSTRACT

BACKGROUND: Hepatic encephalopathy (HE) is closely associated with inflammatory responses. However, as a crucial regulator of the immune and inflammatory responses, the role of leucine-rich repeat kinase 2 (LRRK2) in the pathogenesis of HE remains unraveled. Herein, we investigated this issue in thioacetamide (TAA)-induced HE following acute liver failure (ALF). METHODS: TAA-induced HE mouse models of LRRK2 wild type (WT), LRRK2 G2019S mutation (Lrrk2G2019S) and LRRK2 knockout (Lrrk2-/-) were established. A battery of neurobehavioral experiments was conducted. The biochemical indexes and pro-inflammatory cytokines were detected. The prefrontal cortex (PFC), striatum (STR), hippocampus (HIP), and liver were examined by pathology and electron microscopy. The changes of autophagy-lysosomal pathway and activity of critical Rab GTPases were analyzed. RESULTS: The Lrrk2-/--HE model reported a significantly lower survival rate than the other two models (24% vs. 48%, respectively, p < 0.05), with no difference found between the WT-HE and Lrrk2G2019S-HE groups. Compared with the other groups, after the TAA injection, the Lrrk2-/- group displayed a significant increase in ammonium and pro-inflammatory cytokines, aggravated hepatic inflammation/necrosis, decreased autophagy, and abnormal phosphorylation of lysosomal Rab10. All three models reported microglial activation, neuronal loss, disordered vesicle transmission, and damaged myelin structure. The Lrrk2-/--HE mice presented no severer neuronal injury than the other genotypes. CONCLUSIONS: LRRK2 deficiency may exacerbate TAA-induced ALF and HE in mice, in which inflammatory response is evident in the brain and aggravated in the liver. These novel findings indicate a need of sufficient clinical awareness of the adverse effects of LRRK2 inhibitors on the liver.


Subject(s)
Hepatic Encephalopathy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Liver Failure, Acute , Mice, Knockout , Thioacetamide , Animals , Mice , Hepatic Encephalopathy/pathology , Hepatic Encephalopathy/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Liver Failure, Acute/chemically induced , Liver Failure, Acute/pathology , Liver Failure, Acute/genetics , Mice, Inbred C57BL , Thioacetamide/toxicity
5.
Heliyon ; 10(5): e27169, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486725

ABSTRACT

Background: While serum uric acid (SUA) is known as a cardiovascular disease risk factor and is associated with increased cardiovascular mortality, the relationship between SUA and cardiovascular adaptability under exercise stress remains unclear. Aims: This study aims to elucidate the relationship between SUA levels and cardiovascular fitness, particularly as manifested during cardiopulmonary exercise testing. Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 1999-2004, this study included 5765 participants aged 12-49 years. Heart rate recovery (HRR) during cardiopulmonary exercise testing was measured as an indicator of cardiovascular fitness. Multivariate linear regression analysis was used to explore the association between SUA levels and heart rate recovery at 1 min (HRR1) and 2 min (HRR2) post-exercise. Results: After adjusting for potential confounders, an inverse relationship was found between SUA levels and both HRR1 and HRR2. Multivariate adjusted smoothing spline plots demonstrated a decrease in HRR1 and HRR2 with increasing SUA levels. This negative correlation was observed across nearly all subgroups. Conclusions: Elevated SUA levels are indicative of poorer cardiovascular adaptability in the adult US population.

6.
J Affect Disord ; 355: 1-11, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38537750

ABSTRACT

BACKGROUND: The relationship between inflammatory dietary patterns and the risk of depression/anxiety has not been clearly established due to differences in study populations, geographic regions, sex, and methods of calculating the inflammatory index. METHODS: We drew upon a prospective cohort in the UK Biobank and calculated the energy-adjusted dietary inflammatory index (E-DII). The follow-up time was defined from the date of completing the last dietary survey questionnaire to the date of diagnosis of depression, anxiety, phobic anxiety, other types of anxiety, death, loss to follow-up, or the respective censoring dates for England (September 30, 2021), Scotland (July 31, 2021), and Wales (February 28, 2018). The final follow-up times end on September 30, 2021, July 31, 2021, and February 28, 2018, for England, Scotland, and Wales, respectively. During the follow-up process, if a participant develops the condition, dies, or is lost to follow-up, the follow-up is terminated. We used Cox regression to evaluate the connection between E-DII and depression/anxiety. We employed restricted cubic spline curves for nonlinear relationships. We also conducted mediation analyses to explore whether biological age mediated the relationship between E-DII and depression. Additionally, we investigated whether genetic susceptibility modified the relationship between E-DII and depression through interaction modeling. RESULTS: In the final analysis, we included a total of 151,295, 159,695, 165,649, and 160,097 participants for the analysis of depression, all types of anxiety, specific phobia anxiety, and other types of anxiety, respectively. For every one-unit increase in E-DII, the risk of experiencing depression and anxiety increased by 5 % and 4 %, respectively. We identified a "J"-shaped nonlinear relationship (P for nonlinear = 0.003) for both depression and anxiety. A significant association with an elevated risk of depression was observed when E-DII exceeded 0.440, and an increased risk of anxiety was noted when E-DII was more than -0.196. Mediation analysis demonstrated that PhenoAge age acceleration (AA) (For depression, proportion of mediation = 9.6 %; For anxiety, proportion of mediation = 10.1 %) and Klemera-Doubal method Biological Age (KDM AA) (For depression, proportion of mediation = 2.9 %; For anxiety, proportion of mediation = 5.1 %) acted as mediators between E-DII and the development of depression and anxiety (P < 0.05). CONCLUSIONS: Diets with pro-inflammatory characteristics are associated with a heightened risk of depression and anxiety. Furthermore, the association of pro-inflammatory diets and depression is mediated by biological age.


Subject(s)
Depression , UK Biobank , Humans , Depression/epidemiology , Biological Specimen Banks , Inflammation/epidemiology , Diet , Anxiety/epidemiology , Aging
7.
Neuron ; 112(10): 1676-1693.e12, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38513667

ABSTRACT

Neuronal loss is the central issue in Alzheimer's disease (AD), yet no treatment developed so far can halt AD-associated neurodegeneration. Here, we developed a monoclonal antibody (mAb2A7) against 217 site-phosphorylated human tau (p-tau217) and observed that p-tau217 levels positively correlated with brain atrophy and cognitive impairment in AD patients. Intranasal administration efficiently delivered mAb2A7 into male PS19 tauopathic mouse brain with target engagement and reduced tau pathology/aggregation with little effect on total soluble tau. Further, mAb2A7 treatment blocked apoptosis-associated neuronal loss and brain atrophy, reversed cognitive deficits, and improved motor function in male tauopathic mice. Proteomic analysis revealed that mAb2A7 treatment reversed alterations mainly in proteins associated with synaptic functions observed in murine tauopathy and AD brain. An antibody (13G4) targeting total tau also attenuated tau-associated pathology and neurodegeneration but impaired the motor function of male tauopathic mice. These results implicate p-tau217 as a potential therapeutic target for AD-associated neurodegeneration.


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal , Tauopathies , tau Proteins , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/administration & dosage , Brain/metabolism , Brain/pathology , Brain/drug effects , Disease Models, Animal , Immunotherapy/methods , Mice, Transgenic , Nerve Degeneration/pathology , Nerve Degeneration/drug therapy , Phosphorylation , tau Proteins/metabolism , Tauopathies/drug therapy
8.
EMBO Mol Med ; 16(3): 575-595, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366162

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Humans , Mice , Bunyaviridae Infections/drug therapy , Phlebovirus/physiology , B7-H1 Antigen , Leukocytes, Mononuclear , Programmed Cell Death 1 Receptor
9.
Sci Total Environ ; 914: 169874, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185174

ABSTRACT

Human blood has been commonly and routinely analyzed to determine internal human exposure to parabens. However, data on the occurrence of parabens and their common metabolite, p-hydroxybenzoic acid (4-HB), in different human blood matrixes is still limited. In this study, 139 pairs of serum and whole blood samples were collected from Chinese adults, and then analyzed them for 5 parabens and 4-HB. Methylparaben (MeP) and propylparaben (PrP) were consistently the predominant parabens in human serum (mean 2.3 and 2.1 ng/mL, respectively) and whole blood (1.9 and 1.3 ng/mL, respectively). Mean concentrations of 4-HB in human serum and whole blood were 7.7 and 12 ng/mL, respectively. Concentrations of parabens, except benzylparaben (BzP), and 4-HB in human serum were significantly (p < 0.01) correlated with that in whole blood. Distribution pattern of parabens and 4-HB in human blood was evaluated, for the first time, based on their partitioning between human serum and whole blood (Kp). Mean Kp values of parabens, except BzP, increased with the alkyl chain length from 0.83 to 1.6. BzP (mean 1.4) had a comparable mean Kp value to PrP (mean 1.4). Among target analytes, 4-HB had the lowest mean Kp value (0.75). These data are important to select appropriate blood matrixes for conducting human exposure assessment and epidemiological studies on parabens.


Subject(s)
Blood , Parabens , Adult , Humans , Parabens/pharmacokinetics
10.
Sci Total Environ ; 914: 170045, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38218487

ABSTRACT

General populations are widely exposed to various p-phenylenediamine antioxidants (PPDs). N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a typical p-phenylenediamine antioxidant, has been detected in human urine samples. However, the occurrence of other widely used PPDs in human urine is still unclear. This study comprehensively characterized the occurrence of 9 PPDs in human urine from 151 Chinese adults. Our results showed that all target PPDs were detected in human urine samples, with the total concentrations of PPDs ranging from 0.41 to 38 ng/mL. PPDs in human urine was dominated by 6PPD (mean 1.2 ng/mL, range < LOD - 3.8 ng/mL), followed by N-phenyl-N'-cyclohexyl-p-phenylenediamine (CPPD; 0.85 ng/mL,

Subject(s)
Antioxidants , Nitro Compounds , Phenylenediamines , Adult , Humans , Male , Female
11.
J Colloid Interface Sci ; 658: 209-218, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38103471

ABSTRACT

Industrial solid waste management and recycling are important to environmental sustainability. In this study, cobalt (Co) nanoparticles encapsulated in paint sludge-derived activated carbon (AC) were fabricated. The Co-AC possessed high conductivity, magnetic properties and abundant metal oxide impurities (TiAlSiOx), which was applied as multifunctional catalyst for peroxymonosulfate (PMS) activation. Compared to pure AC, the Co-AC exhibited significant enhanced performance for degradation of tetracycline hydrochloride (TCH) via PMS activation. Mechanism studies by in situ Raman spectroscopy, Fourier infrared spectroscopy, electrochemical analysis and electron paramagnetic resonance suggested that surface-bonded PMS (PMS*) and singlet oxygen (1O2) are the dominant reactive species for TCH oxidation. The non-radical species can efficiently oxidize electron-rich pollutants with high efficiency, which minimized the consumption of PMS and the catalyst. The removal percentages of TCH reached 97 % within 5 min and âˆ¼ 99 % within 15 min in the Co-AC/PMS system. The Co active sites facilitated PMS adsorption to form the PMS* and the TiAlSiOx impurities provided abundant oxygen vacancy for generation of the 1O2. In addition, the Co-AC/PMS system achieved high efficiency and stability for oxidation of the target pollutants over a long-term continuous operation. This work not only offers a cost-effective approach for recycling industrial waste but also provides new insights into the application of waste-derived catalyst for environmental remediation.

12.
J Environ Sci (China) ; 139: 543-555, 2024 May.
Article in English | MEDLINE | ID: mdl-38105075

ABSTRACT

Cadmium (Cd) pollution poses a serious threat to plant growth and yield. Nanomaterials have shown great application potential for alleviation of Cd toxicity to plants. In this study, we applied graphitic carbon nitride nanosheets (g-C3N4 NSs) for alleviation of Cd-toxicity to soybean (Glycine max L.). The g-C3N4 NSs supplementation significantly improved plant growth and reduced oxidative damage in the Cd-toxicated soybean seedlings through hydroponic culture. Particularly, the g-C3N4 NSs dynamically regulated the root cell wall (RCW) components by increasing pectin content and modifying its demethylation via enhancing pectin methylesterase (PME) activity, therefore greatly enhanced stronger RCW-Cd retention (up to 82.8%) and reduced Cd migration to the shoot. Additionally, the g-C3N4 NSs reversed the Cd-induced chlorosis, increased photosynthetic efficiency because of enhancement in Fv/Fm ration, Y(II) and sugars content. These results provide new insights into the alleviation of Cd toxicity to plants by g-C3N4 NSs, and shed light on the application of low-cost and environmental-friendly carbon-based NMs for alleviating heavy metal toxicity to plants.


Subject(s)
Cadmium , Graphite , Cadmium/toxicity , Glycine max , Nitrogen Compounds , Plant Roots
13.
J Affect Disord ; 348: 135-142, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38154580

ABSTRACT

BACKGROUND AND AIM: Ethylene oxide (EO) is a commonly used compound with known health risks. However, the specific association between EO exposure and the development of depressive symptoms has not been well established. Therefore, this study aimed to examine the potential association between EO exposure, as indicated by hemoglobin adduct of ethylene oxide (HbEO) levels, and the occurrence of depressive symptoms. METHODS: We employed logistic regression, restricted cubic spline, and subgroup analysis to investigate the association between EO exposure and the occurrence of depressive symptoms. Additionally, we conducted a mediating effect analysis to explore the potential factors influencing the association between EO exposure and depressive symptoms. RESULTS: Elevated HbEO levels were associated with the development of depressive symptoms. After adjusting for potential confounders, the highest quartile of HbEO levels showed an odds ratio (OR) of 3.37 [95 % confidence interval (CI): 1.87-6.10, P = 0.002] compared with the lowest quartile. Additionally, a linear association was observed between HbEO levels and the risk of depressive symptoms. We also revealed that the levels of several inflammatory factors and triglycerides mediated the association between EO exposure and the occurrence of depressive symptoms. CONCLUSIONS: Higher levels of EO exposure were related to an increased risk of developing depressive symptoms. The analysis also suggested that the inflammatory response might play a mediating role in the pathway from EO exposure to depressive symptoms.


Subject(s)
Depression , Ethylene Oxide , Humans , Cross-Sectional Studies , Nutrition Surveys
14.
Front Nutr ; 10: 1150992, 2023.
Article in English | MEDLINE | ID: mdl-37941773

ABSTRACT

Background: The association between coffee and mortality risk has been found in most previous studies, and recent studies have found an association between coffee consumption and cognition. However, there is still a lack of research exploring whether the association between coffee and mortality is influenced by cognitive function. Objective: The purpose of this study was to explore the association of coffee, caffeine intake in coffee and decaffeinated coffee with all-cause mortality and cardiovascular disease (CVD) mortality in older adults with different cognitive performances. Methods: The study was based on data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. Coffee and caffeine consumption data were obtained from two 24-h dietary recalls. Individual cognitive functions were assessed by CERAD-word learning test (CERAD-WLT), animal fluency test (AFT), and digit symbol substitution test (DSST). In addition, principal component analysis (PCA) was performed with the above test scores to create global cognitive score. The lowest quartile of scores was used to classify cognitive performance. Cox regression and restricted cubic spline (RCS) were applied to assess the relationship between coffee and caffeine consumption and mortality. Results: In the joint effects analysis, we found that those with cognitive impairment and who reported without drinking coffee had the highest risk of all-cause and cardiovascular mortality compared with others. In the analysis of population with cognitive impairment, for all-cause mortality, those who showed cognitive impairment in the AFT displayed a significant negative association between their total coffee consumption and mortality {T3 (HR [95% CI]), 0.495 [0.291-0.840], p = 0.021 (trend analysis)}. For DSST and global cognition, similar results were observed. Whereas for CERAD-WLT, restricted cubic spline (RCS) showed a "U-shaped" association between coffee consumption and mortality. For CVD mortality, a significant negative trend in coffee consumption and death was observed only in people with cognitive impairment in AFT or DSST. In addition, we observed that decaffeinated coffee was associated with reduced mortality in people with cognitive impairment. Conclusion: Our study suggested that the association between coffee consumption and mortality is influenced by cognition and varies with cognitive impairment in different cognitive domains.

15.
Res Sq ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014322

ABSTRACT

Background: Timely and precise detection of emerging infections is crucial for effective outbreak management and disease control. Human mobility significantly influences infection risks and transmission dynamics, and spatial sampling is a valuable tool for pinpointing potential infections in specific areas. This study explored spatial sampling methods, informed by various mobility patterns, to optimize the allocation of testing resources for detecting emerging infections. Methods: Mobility patterns, derived from clustering point-of-interest data and travel data, were integrated into four spatial sampling approaches to detect emerging infections at the community level. To evaluate the effectiveness of the proposed mobility-based spatial sampling, we conducted analyses using actual and simulated outbreaks under different scenarios of transmissibility, intervention timing, and population density in cities. Results: By leveraging inter-community movement data and initial case locations, the proposed case flow intensity (CFI) and case transmission intensity (CTI)-informed sampling approaches could considerably reduce the number of tests required for both actual and simulated outbreaks. Nonetheless, the prompt use of CFI and CTI within communities is imperative for effective detection, particularly for highly contagious infections in densely populated areas. Conclusions: The mobility-based spatial sampling approach can substantially improve the efficiency of community-level testing for detecting emerging infections. It achieves this by reducing the number of individuals screened while maintaining a high accuracy rate of infection identification. It represents a cost-effective solution to optimize the deployment of testing resources, when necessary, to contain emerging infectious diseases in diverse settings.

16.
Int J Biol Macromol ; 253(Pt 7): 127344, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37848107

ABSTRACT

The continued viral evolution results in the emergence of various SARS-CoV-2 variants, such as delta or omicron, that are partially resistant to current vaccines and antiviral medicines, posing an increased risk to global public health and raising the importance of continuous development of antiviral medicines. Inhibitor screening targeting the interactions between the viral spike proteins and their human receptor ACE2 represents a promising approach for drug discovery. Here, we demonstrate that the evolutionary trend of the SARS-CoV-2 variants is associated with increased electrostatic interactions between S proteins and ACE2. Virtual screening based on the ACE2-RBD binding interface identified nine monomers of Traditional Chinese medicine (TCM). Furthermore, live-virus neutralization assays revealed that Dauricine, one of the identified monomers, exhibited an antiviral activity with an IC50 range of 18.2 to 33.3 µM for original strain, Delta, and Omicron strains, respectively. The computational study showed that the polycyclic and methoxy groups of Dauricine adhere to the RBD surface through π-π and electrostatic interactions. The discovery of Dauricine is a successful attempt to target viral entry, which will not only help society to respond quickly to viral variants, but also accelerate variant drug development thereby reducing the pressure on health authorities to respond to outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Protein Binding
17.
Nat Commun ; 14(1): 5270, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644012

ABSTRACT

Targeted public health interventions for an emerging epidemic are essential for preventing pandemics. During 2020-2022, China invested significant efforts in strict zero-COVID measures to contain outbreaks of varying scales caused by different SARS-CoV-2 variants. Based on a multi-year empirical dataset containing 131 outbreaks observed in China from April 2020 to May 2022 and simulated scenarios, we ranked the relative intervention effectiveness by their reduction in instantaneous reproduction number. We found that, overall, social distancing measures (38% reduction, 95% prediction interval 31-45%), face masks (30%, 17-42%) and close contact tracing (28%, 24-31%) were most effective. Contact tracing was crucial in containing outbreaks during the initial phases, while social distancing measures became increasingly prominent as the spread persisted. In addition, infections with higher transmissibility and a shorter latent period posed more challenges for these measures. Our findings provide quantitative evidence on the effects of public-health measures for zeroing out emerging contagions in different contexts.


Subject(s)
COVID-19 , Public Health , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control
18.
Environ Sci Pollut Res Int ; 30(41): 94988-95001, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37542018

ABSTRACT

Cadmium (Cd) contamination has led to various harmful impacts on soil microbial ecosystem, agricultural crops, and thus human health. Nanomaterials are promising candidates for reducing the accumulation of heavy metals in plants. In this study, graphitic carbon nitride (g-C3N4), a two-dimensional polymeric nanomaterial, was applied for ameliorating Cd phytotoxicity to soybean (Glycine max (L.) Merr.). Its impacts on rhizosphere variables, microorganisms, and metabolism were examined. It was found that g-C3N4 increased carbon/nitrogen/phosphorus (C/N/P) content, especially when N contents were averagely 4.2 times higher in the g-C3N4-treated groups. g-C3N4 significantly induced alterations in microbial community structures (P < 0.05). The abundance of the probiotics class Nitrososphaeria was enriched (on average 70% higher in the g-C3N4-treated groups) as was Actinobacteria (226% higher in the g-C3N4 group than in the CK group). At the genus level, g-C3N4 recruited more Bradyrhizobium (122% higher) in the Cd + g-C3N4 group than in the Cd group and more Sphingomonas (on average 24% higher) in the g-C3N4-treated groups. The changes of microbial clusters demonstrated the potential of g-C3N4 to shape microbial functions, promote plant growth, and enhance Cd resistance, despite observing less pronounced modifications in microbial communities in Cd-contaminated soil compared to Cd-free soil. Moreover, abundance of functional genes related to C/N/P transformation was more significantly promoted by g-C3N4 in Cd-contaminated soil (increased by 146%) than in Cd-free one (increased by 32.8%). Therefore, g-C3N4 facilitated enhanced microbial survival and adaptation through the amplification of functional genes. These results validated the alleviation of g-C3N4 on the microbial communities in the soybean rhizosphere and shed a new light on the application of environmental-friendly nanomaterials for secure production of the crop under soil Cd exposure.


Subject(s)
Cadmium , Glycine max , Graphite , Microbiota , Nitrogen Compounds , Rhizosphere , Cadmium/toxicity , Glycine max/drug effects , Glycine max/growth & development , Glycine max/microbiology , Soil Microbiology , Soil/chemistry , Graphite/pharmacology , Nitrogen Compounds/pharmacology , Microbiota/drug effects
19.
Nat Genet ; 55(6): 1009-1021, 2023 06.
Article in English | MEDLINE | ID: mdl-37291193

ABSTRACT

Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Adenoma , Hyperaldosteronism , Hypertension , Humans , Aldosterone , Cytochrome P-450 CYP11B2 , Gap Junctions , Mutation , Cell Adhesion Molecule-1
20.
Front Oncol ; 13: 1057841, 2023.
Article in English | MEDLINE | ID: mdl-37207135

ABSTRACT

Purpose: During neoadjuvant chemotherapy (NACT), breast tumor morphological and vascular characteristics are usually changed. This study aimed to evaluate the tumor shrinkage pattern and response to NACT by preoperative multiparametric magnetic resonance imaging (MRI), including dynamic contrast-enhanced MRI (DCE-MRI), diffuse weighted imaging (DWI) and T2 weighted imaging (T2WI). Method: In this retrospective analysis, female patients with unilateral unifocal primary breast cancer were included for predicting tumor pathologic/clinical response to NACT (n=216, development set, n=151 and validation set, n=65) and for discriminating the tumor concentric shrinkage (CS) pattern from the others (n=193; development set, n=135 and validation set, n=58). Radiomic features (n=102) of first-order statistical, morphological and textural features were calculated on tumors from the multiparametric MRI. Single- and multiparametric image-based features were assessed separately and were further combined to feed into a random forest-based predictive model. The predictive model was trained in the testing set and assessed on the testing dataset with an area under the curve (AUC). Molecular subtype information and radiomic features were fused to enhance the predictive performance. Results: The DCE-MRI-based model showed higher performance (AUCs of 0.919, 0.830 and 0.825 for tumor pathologic response, clinical response and tumor shrinkage patterns, respectively) than either the T2WI or the ADC image-based model. An increased prediction performance was achieved by a model with multiparametric MRI radiomic feature fusion. Conclusions: All these results demonstrated that multiparametric MRI features and their information fusion could be of important clinical value for the preoperative prediction of treatment response and shrinkage pattern.

SELECTION OF CITATIONS
SEARCH DETAIL
...