Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Commun Biol ; 7(1): 960, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117859

ABSTRACT

Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.


Subject(s)
Depressive Disorder, Major , Transcriptome , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Female , Male , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Middle Aged , Magnetic Resonance Imaging , Gene Expression Profiling
2.
Transl Psychiatry ; 12(1): 236, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668086

ABSTRACT

The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping/methods , Default Mode Network , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Nucleus Accumbens/diagnostic imaging , Reward
3.
Bipolar Disord ; 24(4): 400-411, 2022 06.
Article in English | MEDLINE | ID: mdl-34606159

ABSTRACT

BACKGROUND: Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS: In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS: As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS: We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
4.
J Clin Lab Anal ; 36(1): e24185, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34919739

ABSTRACT

BACKGROUND: Tuberculosis poses a severe threat to human health. At present, compared with the traditional diagnostic methods for tuberculosis pleural effusion, such as Löwenstein-Jensen culture, pleural biopsy, and Ziehl-Neelsen smear microscopy, Xpert MTB/RIF was regarded as an emerging technology for its efficiency. The Xpert MTB/RIF accuracy for tuberculous pleural effusion diagnosis was evaluated in this systematic study. MATERIALS AND METHODS: We searched the relevant literature published before January 2021 in PubMed, Cochrane, EMBASE, and Web of Science databases. Utilizing Review Manager 5.3 software, the quality of the included literature was evaluated based on the Quality Assessment of Diagnostic Accuracy Studies criteria. Sensitivity, specificity, and the summary receiver operating characteristic curves were plotted and analyzed with Metadisc 1.40 software. We used Stata 12.0 software to evaluate the publication bias of this study. RESULTS: Eighteen articles were identified in total. The sensitivity of Xpert MTB/RIF in the pleural effusion was 0.24, and specificity was 1.00, respectively. The area under the summary receiver operating characteristic curve was 0.9737, which indicated that the overall accuracy of the Xpert MTB/RIF was high. In addition, based on the Deeks funnel plot, no publication bias of the study was found. CONCLUSION: Xpert MTB/RIF is a rapid method with high specificity but relatively low sensitivity for detecting Mycobacterium tuberculosis in pleural effusion. Its less sensitivity made it difficult to be used clinically, but the high specificity suggests that it can be used as a specific diagnostic method for tuberculous pleural effusion.


Subject(s)
Mycobacterium tuberculosis/isolation & purification , Nucleic Acid Amplification Techniques , Pleural Effusion/microbiology , Tuberculosis/diagnosis , Humans , ROC Curve , Reference Standards , Sensitivity and Specificity
5.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4223-4236, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34951263

ABSTRACT

Global climate change and local urban heat islands enhance urban heat stress. Studies focused at the urban neighborhood scale are limited. Wet-bulb temperature represents the combined effects of both temperature and humidity, and therefore can more accurately reflect human thermal comfort. In this study, air temperature, relative humidity and geographic information of different times, seasons, and sky conditions of the Nanjing Jiangbei New Area were obtained based on mobile measurements. The spatiotemporal variation of wet-bulb temperature at the urban neighborhood scale and the effects of sky conditions, land cover and urban morphology (sky view factor, SVF) were further analyzed. The results showed that: 1) the spatiotemporal variations of wet-bulb temperature at the Nanjing urban neighborhood scale were consistent with that of air temperature. Compared with vapor pressure, air temperature played a dominant role. The extremely high values of wet-bulb temperature in this area were mostly caused by the synergy between air temperature and vapor pressure. 2) The correlation between SVF and wet-bulb temperature was significantly positive in the daytime and negative at night. An increase in the vegetation fraction could reduce wet-bulb temperature, while impervious surfaces had the opposite effect. The wet-bulb temperature significantly decreased and its spatial distribution was much more homogeneous under overcast sky conditions. 3) The horizontal scale effect showed diurnal and seasonal differences and was more sensitive to sky conditions during nighttime than during daytime. Compared with vegetation, the horizontal effect of impervious surfaces was much larger in winter than in the other two seasons. The horizontal scale effects of vege-tation and impervious surfaces on wet-bulb temperature were similar to those of air temperature. These results could provide effective scientific support and a theoretical basis for improving and optimizing the thermal environment of urban neighborhoods, as well as alleviating urban heat stress.


Subject(s)
Climate Change , Hot Temperature , Cities , Humans , Humidity , Temperature
6.
Mol Psychiatry ; 26(12): 7363-7371, 2021 12.
Article in English | MEDLINE | ID: mdl-34385597

ABSTRACT

Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.


Subject(s)
Depressive Disorder, Major , Brain , Brain Mapping , Humans , Magnetic Resonance Imaging/methods , Neural Pathways , Sample Size
7.
Article in English | MEDLINE | ID: mdl-34119573

ABSTRACT

OBJECTIVE: While gastrointestinal (GI) symptoms are very common in patients with major depressive disorder (MDD), few studies have investigated the neural basis behind these symptoms. In this study, we sought to elucidate the neural basis of GI symptoms in MDD patients by analyzing the changes in regional gray matter volume (GMV) and gray matter density (GMD) in brain structure. METHOD: Subjects were recruited from 13 clinical centers and categorized into three groups, each of which is based on the presence or absence of GI symptoms: the GI symptoms group (MDD patients with at least one GI symptom), the non-GI symptoms group (MDD patients without any GI symptoms), and the healthy control group (HCs). Structural magnetic resonance images (MRI) were collected of 335 patients in the GI symptoms group, 149 patients in the non-GI symptoms group, and 446 patients in the healthy control group. The 17-item Hamilton Depression Rating Scale (HAMD-17) was administered to all patients. Correlation analysis and logistic regression analysis were used to determine if there was a correlation between the altered brain regions and the clinical symptoms. RESULTS: There were significantly higher HAMD-17 scores in the GI symptoms group than that of the non-GI symptoms group (P < 0.001). Both GMV and GMD were significant different among the three groups for the bilateral superior temporal gyrus, bilateral middle temporal gyrus, left lingual gyrus, bilateral caudate nucleus, right Fusiform gyrus and bilateral Thalamus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the HC group, the GI symptoms group demonstrated increased GMV and GMD in the bilateral superior temporal gyrus, and the non-GI symptoms group demonstrated an increased GMV and GMD in the right superior temporal gyrus, right fusiform gyrus and decreased GMV in the right Caudate nucleus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the non-GI symptoms group, the GI symptoms group demonstrated significantly increased GMV and GMD in the bilateral thalamus, as well as decreased GMV in the bilateral superior temporal gyrus and bilateral insula lobe (GRF correction, cluster-P < 0.01, voxel-P < 0.001). While these changed brain areas had significantly association with GI symptoms (P < 0.001), they were not correlated with depressive symptoms (P > 0.05). Risk factors for gastrointestinal symptoms in MDD patients (p < 0.05) included age, increased GMD in the right thalamus, and decreased GMV in the bilateral superior temporal gyrus and left Insula lobe. CONCLUSION: MDD patients with GI symptoms have more severe depressive symptoms. MDD patients with GI symptoms exhibited larger GMV and GMD in the bilateral thalamus, and smaller GMV in the bilateral superior temporal gyrus and bilateral insula lobe that were correlated with GI symptoms, and some of them and age may contribute to the presence of GI symptoms in MDD patients.


Subject(s)
Depressive Disorder, Major/pathology , Gray Matter/pathology , Abdominal Pain/etiology , Abdominal Pain/psychology , Adult , Brain/pathology , Brief Psychiatric Rating Scale , Caudate Nucleus/pathology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Temporal Lobe/pathology , Thalamus/pathology
8.
J Affect Disord ; 284: 217-228, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33609956

ABSTRACT

BACKGROUND: Functional specialization is a feature of human brain for understanding the pathophysiology of major depressive disorder (MDD). The degree of human specialization refers to within and cross hemispheric interactions. However, most previous studies only focused on interhemispheric connectivity in MDD, and the results varied across studies. Hence, brain functional connectivity asymmetry in MDD should be further studied. METHODS: Resting-state fMRI data of 753 patients with MDD and 451 healthy controls were provided by REST-meta-MDD Project. Twenty-five project contributors preprocessed their data locally with the Data Processing Assistant State fMRI software and shared final indices. The parameter of asymmetry (PAS), a novel voxel-based whole-brain quantitative measure that reflects inter- and intrahemispheric asymmetry, was reported. We also examined the effects of age, sex and clinical variables (including symptom severity, illness duration and three depressive phenotypes). RESULTS: Compared with healthy controls, patients with MDD showed increased PAS scores (decreased hemispheric specialization) in most of the areas of default mode network, control network, attention network and some regions in the cerebellum and visual cortex. Demographic characteristics and clinical variables have significant effects on these abnormalities. LIMITATIONS: Although a large sample size could improve statistical power, future independent efforts are needed to confirm our results. CONCLUSIONS: Our results highlight the idea that many brain networks contribute to broad clinical pathophysiology of MDD, and indicate that a lateralized, efficient and economical brain information processing system is disrupted in MDD. These findings may help comprehensively clarify the pathophysiology of MDD in a new hemispheric specialization perspective.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , Depressive Disorder, Major/diagnostic imaging , Dominance, Cerebral , Humans , Magnetic Resonance Imaging
9.
Neuroimage Clin ; 28: 102514, 2020.
Article in English | MEDLINE | ID: mdl-33396001

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is heterogeneous disorder associated with aberrant functional connectivity within the default mode network (DMN). This study focused on data-driven identification and validation of potential DMN-pattern-based MDD subtypes to parse heterogeneity of the disorder. METHODS: The sample comprised 1397 participants including 690 patients with MDD and 707 healthy controls (HC) registered from multiple sites based on the REST-meta-MDD Project in China. Baseline resting-state functional magnetic resonance imaging (rs-fMRI) data was recorded for each participant. Discriminative features were selected from DMN between patients and HC. Patient subgroups were defined by K-means and principle component analysis in the multi-site datasets and validated in an independent single-site dataset. Statistical significance of resultant clustering were confirmed. Demographic and clinical variables were compared between identified patient subgroups. RESULTS: Two MDD subgroups with differing functional connectivity profiles of DMN were identified in the multi-site datasets, and relatively stable in different validation samples. The predominant dysfunctional connectivity profiles were detected among superior frontal cortex, ventral medial prefrontal cortex, posterior cingulate cortex and precuneus, whereas one subgroup exhibited increases of connectivity (hyperDMN MDD) and another subgroup showed decreases of connectivity (hypoDMN MDD). The hyperDMN subgroup in the discovery dataset had age-related severity of depressive symptoms. Patient subgroups had comparable demographic and clinical symptom variables. CONCLUSIONS: Findings suggest the existence of two neural subtypes of MDD associated with different dysfunctional DMN connectivity patterns, which may provide useful evidence for parsing heterogeneity of depression and be valuable to inform the search for personalized treatment strategies.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , China , Default Mode Network , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Neuroimaging
10.
Sheng Li Xue Bao ; 71(5): 760-768, 2019 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-31646330

ABSTRACT

Obstructive sleep apnea (OSA) is a common clinic sleep disorder, and characterized by obstruction of upper airway during sleep, resulting in sleep fragmentation and intermittent hypoxemia. We reviewed the brain imaging studies in OSA patients compared with healthy subjects, including studies of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). The resting-state EEG studies showed increased power of δ and θ in the front and central regions of the cerebral cortex in OSA patients. While resting-state fMRI studies demonstrated altered large-scale networks in default-mode network (DMN), central executive network (CEN) and salience network (SN). Evidence from resting-state studies of both fMRI and EEG focused on the abnormal activity in prefrontal cortex (PFC), which is correlated with OSA severity. These findings suggested that the PFC may play a key role in the abnormal function of OSA patients. Finally, based on the perspectives of treatment effect, multimodal data acquisition, and comorbidities, we discussed the future research direction of the neuroimaging study of OSA.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Sleep Apnea, Obstructive/diagnostic imaging , Electroencephalography , Humans , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL