Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.237
Filter
2.
Se Pu ; 42(5): 465-473, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736390

ABSTRACT

A method based on gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) coupled with one-step QuEChERS technique was developed for the simultaneous determination of 15 N-nitrosamines in air-dried yak meat. The hydration volume, extraction solvent, extracting salt, and cleaning material were optimized according to the characteristics of the N-nitrosamines and sample matrix. The optimized conditions were as follows: 10 mL of purified water for sample hydration, acetonitrile as the extraction solvent for the sample after hydration, 4.0 g of anhydrous MgSO4 and 1.0 g of NaCl as extracting salts, 500 mg of MgSO4+25 mg of C18+50 mg of PSA as cleaning materials. Favorable recoveries of the 15 N-nitrosamines were obtained when the extraction solution was incompletely dried. Thus, the final extract was dried to below 0.5 mL under a mild nitrogen stream and then redissolved to 0.5 mL with acetonitrile. After filtration, 200 µL of the sample was transferred to an autosampler vial for GC-MS/MS analysis. The 15 N-nitrosamines were determined using GC-MS/MS on a DB-HeavyWAX column (30 m×0.25 mm×0.25 µm) with an electron impact ion source in multiple-reaction monitoring (MRM) mode, and quantified using an external standard method. Under the optimized experimental conditions, the results showed that the calibration curves exhibited good linearities for the 15 N-nitrosamines, with correlation coefficients (r2) greater than 0.9990. The limits of detection (LODs) and the limits of quantification (LOQs) ranged from 0.05 to 0.20 µg/kg and from 0.10 to 0.50 µg/kg, respectively. At spiked levels of 1LOQ, 2LOQ, and 10LOQ, the average recoveries were 79.4%-102.1%, 80.6%-109.5%, and 83.0%-110.6%, respectively, and the relative standard deviations were in the range of 0.8%-16.0%. The low matrix effects of the 15 N-nitrosamines indicated the high sensitivity of the proposed method. The method was applied to detect representative commercial air-dried yak meat samples obtained using different processing techniques. Seven N-nitrosamines, including N-nitrosodimethylamine, N-nitrosodiisobutylamine, N-nitrosodibutylamine, N-methyl-N-phenylnitrous amide, N-ethyl-N-nitrosoaniline, N-nitrosopyrrolidine, and N-nitrosodiphenylamine were detected in all samples. The average contents of the seven N-nitrosamines was 0.08-20.18 µg/kg. The detection rates and average contents of the N-nitrosamines in cooked air-dried yak meat samples were higher than those in traditional raw air-dried yak meat samples. Compared with the manual QuEChERS method, the one-step QuEChERS method developed integrated the extraction and clean-up procedures into one single run, and the detection efficiency was considerably improved. The developed method is simple, rapid, highly sensitive, and insusceptible to human errors. Thus, it is useful for the determination of N-nitrosamines in air-dried yak meat and can be extended to the qualitative and quantitative analysis of N-nitrosamines in other meat products. It also provides method support and a data reference for the general determination of N-nitrosamines, which is of great significance for food safety.


Subject(s)
Food Contamination , Gas Chromatography-Mass Spectrometry , Meat , Nitrosamines , Animals , Nitrosamines/analysis , Gas Chromatography-Mass Spectrometry/methods , Cattle , Food Contamination/analysis , Meat/analysis
3.
Angew Chem Int Ed Engl ; : e202402371, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38763920

ABSTRACT

2D compounds exfoliated from weakly bonded bulk materials with van der Waals (vdW) interaction are easily accessible. However, the strong internal ionic/covalent bonding of most inorganic crystal frameworks greatly hinders 2D material exfoliation. Herein, we first proposed a radical/strain-synergistic strategy to exfoliate non-vdW interacting pseudo-layered phosphate framework. Specifically, hydroxyl radicals (•OH) distort the covalent bond irreversibly, meanwhile, H2O molecules as solvents, further accelerating interlayered ionic bond breakage but mechanical expansion. The innovative 2D laminar NASICON-type Na3V2(PO4)2O2F crystal, exfoliated by •OH/H2O synergistic strategy, exhibits enhanced sodium-ion storage capacity, high-rate performance (85.7 mA h g-1 at 20 C), cyclic life (2300 cycles), and ion migration rates, compared with the bulk framework. Importantly, this chemical/physical dual driving technique realized the effective exfoliation for strongly coupled pseudo-layered frameworks, which accelerates 2D functional material development.

4.
Int J Ophthalmol ; 17(5): 940-950, 2024.
Article in English | MEDLINE | ID: mdl-38766336

ABSTRACT

AIM: To gain insights into the global research hotspots and trends of myopia. METHODS: Articles were downloaded from January 1, 2013 to December 31, 2022 from the Science Core Database website and were mainly statistically analyzed by bibliometrics software. RESULTS: A total of 444 institutions in 87 countries published 4124 articles. Between 2013 and 2022, China had the highest number of publications (n=1865) and the highest H-index (61). Sun Yat-sen University had the highest number of publications (n=229) and the highest H-index (33). Ophthalmology is the main category in related journals. Citations from 2020 to 2022 highlight keywords of options and reference, child health (pediatrics), myopic traction mechanism, public health, and machine learning, which represent research frontiers. CONCLUSION: Myopia has become a hot research field. China and Chinese institutions have the strongest academic influence in the field from 2013 to 2022. The main driver of myopic research is still medical or ophthalmologists. This study highlights the importance of public health in addressing the global rise in myopia, especially its impact on children's health. At present, a unified theoretical system is still needed. Accurate surgical and therapeutic solutions must be proposed for people with different characteristics to manage and intervene refractive errors. In addition, the benefits of artificial intelligence (AI) models are also reflected in disease monitoring and prediction.

5.
Poult Sci ; 103(7): 103820, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38759565

ABSTRACT

The "KNDy neurons" located in the hypothalamic arcuate nucleus (ARC) of mammals are known to co-express kisspeptin, neurokinin B (NKB), and dynorphin (DYN), and have been identified as key mediators of the feedback regulation of steroid hormones on gonadotropin-releasing hormone (GnRH). However, in birds, the genes encoding kisspeptin and its receptor GPR54 are genomic lost, leaving unclear mechanisms for feedback regulation of GnRH by steroid hormones. Here, the genes tachykinin 3 (TAC3) and prodynorphin (PDYN) encoding chicken NKB and DYN neuropeptides were successfully cloned. Temporal expression profiling indicated that TAC3, PDYN and their receptor genes (TACR3, OPRK1) were mainly expressed in the hypothalamus, with significantly higher expression at 30W than at 15W. Furthermore, overexpression or interference of TAC3 and PDYN can regulate the GnRH mRNA expression. In addition, in vivo and in vitro assays showed that estrogen (E2) could promote the mRNA expression of TAC3, PDYN, and GnRH, as well as the secretion of GnRH/LH. Mechanistically, E2 could dimerize the nuclear estrogen receptor 1 (ESR1) to regulate the expression of TAC3 and PDYN, which promoted the mRNA and protein expression of GnRH gene as well as the secretion of GnRH. In conclusion, these results revealed that E2 could regulate the GnRH expression through TAC3 and PDYN systems, providing novel insights for reproductive regulation in chickens.

6.
J Colloid Interface Sci ; 670: 174-181, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38761570

ABSTRACT

Interlayer intercalation engineering shows great feasibility to improve the structure stability of the layered oxides. Although high Zn-storage capability has been attained based on the pillar effect of multifarious intercalants, an in-depth understanding the synergistic effect of intercalated multiple metal ions is still in deficiency. Herein, alkali metal ion K+, alkaline earth metal ion Mg2+ and trivalent metal ion Al3+ are introduced into the VO interlayer of V2O5. Due to the different electronegativity and hydrated ion radius of K+, Mg2+ and Al3+, adjusting the relative proportions of these metal ions can achieve an appropriate interlayer spacing, stable layer structure and regular morphology, which facilitates the transport kinetics of Zn2+. Under the synergistic effect of pre-intercalated multi-metal ion, the optimal tri-metal ion intercalated hydrated V2O5 cathode exhibits a high specific capacity of 382.4 mAh g-1 at 0.5 A g-1, and long-term cycling stability with capacity retention of 86 % after 2000 cycles at the high current density of 10 A g-1. Ex-situ and kinetic characterizations reveal the fast charge transfer and reversible Zn2+ intercalation mechanism. The multi-ion engineering strategy provides an effective way to design desirable layered cathode materials for aqueous zinc-ion batteries.

7.
Anal Methods ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752456

ABSTRACT

Cocculus orbiculatus (L.) DC. (C. orbiculatus) is a medicinal herb valued for its dried roots with anti-inflammatory, analgesic, diuretic, and other therapeutic properties. Despite its traditional applications, chemical investigations into C. orbiculatus remain limited, focusing predominantly on alkaloids and flavonoids. Furthermore, the therapeutic use of C. orbiculatus predominantly focuses on the roots, leaving the stems, a significant portion of the plant, underutilized. This study employed ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) with in-house and online databases for comprehensive identification of components in various plant parts. Subsequently, untargeted metabolomics was employed to analyze differences in components across different harvest periods and plant sections of C. orbiculatus, aiming to screen for distinct components in different parts of the plant. Finally, metabolomic analysis of the roots and stems, which contribute significantly to the plant's weight, was conducted using chemometrics, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), and heatmaps. A total of 113 components, including alkaloids, flavonoids, and organic acids, were annotated across the root, stem, leaf, flower, and fruit, along with numerous previously unreported compounds. Metabolomic analyses revealed substantial differences in components between the root and stem compared to the leaf, flower, and fruit during the same harvest period. PLS-DA and OPLS-DA annotated 10 differentiating components (VIP > 1.5, P < 0.05, FC > 2 or FC < 0.67), with 5 unique to the root and stem, exhibiting lower mass spectrometric responses. This study provided the first characterization of 113 chemical constituents in different parts of C. orbiculatus, laying the groundwork for pharmacological research and advocating for the enhanced utilization of its stem.

8.
Endocrine ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570388

ABSTRACT

PURPOSE: This study aims to develop a deep learning-based computer-aided diagnosis (CAD) system for the automatic detection and classification of lateral cervical lymph nodes (LNs) on original ultrasound images of papillary thyroid carcinoma (PTC) patients. METHODS: A retrospective data set of 1801 cervical LN ultrasound images from 1675 patients with PTC and a prospective test set including 185 images from 160 patients were collected. Four different deep leaning models were trained and validated in the retrospective data set. The best model was selected for CAD system development and compared with three sonographers in the retrospective and prospective test sets. RESULTS: The Deformable Detection Transformer (DETR) model showed the highest diagnostic efficacy, with a mean average precision score of 86.3% in the retrospective test set, and was therefore used in constructing the CAD system. The detection performance of the CAD system was superior to the junior sonographer and intermediate sonographer with accuracies of 86.3% and 92.4% in the retrospective and prospective test sets, respectively. The classification performance of the CAD system was better than all sonographers with the areas under the curve (AUCs) of 94.4% and 95.2% in the retrospective and prospective test sets, respectively. CONCLUSIONS: This study developed a Deformable DETR model-based CAD system for automatically detecting and classifying lateral cervical LNs on original ultrasound images, which showed excellent diagnostic efficacy and clinical utility. It can be an important tool for assisting sonographers in the diagnosis process.

9.
J Colloid Interface Sci ; 666: 346-354, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38603877

ABSTRACT

The unique electronic and crystal structures of rare earth metals (RE) offer promising opportunities for enhancing the hydrogen evolution reaction (HER) properties of materials. In this work, a series of RE (Sm, Nd, Pr and Ho)-doped Rh@NSPC (NSPC stands for N, S co-doped porous carbon nanosheets) with sizes less than 2 nm are prepared, utilizing a simple, rapid and solvent-free joule-heat pyrolysis method for the first time. The optimized Sm-Rh@NSPC achieves HER performance. The high-catalytic performance and stability of Sm-Rh@NSPC are attributed to the synergistic electronic interactions between Sm and Rh clusters, leading to an increase in the electron cloud density of Rh, which promotes the adsorption of H+, the dissociation of Rh-H bonds and the release of H2. Notably, the overpotential of the Sm-Rh@NSPC catalyst is a mere 18.1 mV at current density of 10 mAcm-2, with a Tafel slope of only 15.2 mV dec-1. Furthermore, it exhibits stable operation in a 1.0 M KOH electrolyte at 10 mA cm-2 for more than 100 h. This study provides new insights into the synthesis of composite RE hybrid cluster nanocatalysts and their RE-enhanced electrocatalytic performance. It also introduces fresh perspectives for the development of efficient electrocatalysts.

10.
Discov Nano ; 19(1): 66, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619656

ABSTRACT

Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.

11.
Redox Rep ; 29(1): 2333096, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38623993

ABSTRACT

OBJECTIVES: The study aimed to assess the role of Astaxanthin (ATX) in palmitic acid(PA) -induced bone loss in Ovariectomized(OVX) rats. METHODS: In the OVX rat model, we observed that PA affects bone metabolism and accelerates bone loss. Additionally, treatment with ATX was able to suppress the deleterious effects of PA and a simultaneous decrease in serum MDA levels and an increase in SOD was observed. RESULTS: In addition, rats treated with ATX were observed to have significantly increased bone mass and elevated activity of SIRT1 and SOD2 in bone tissue. When MC3T3-E1 and RAW264.7 cells induced osteoblast and osteoclast differentiation, the ATX intervention was able to significantly restore the restriction of osteogenic differentiation and the up-regulation of osteoclast differentiation with PA therapy. Furthermore, we confirm that PA damage to cells is caused by increased oxidative stress, and that ATX can target and modulate the activity of SIRT1 to regulate the levels of oxidative stress in cells. CONCLUSION: Summarizing, ATX may inhibit PA-induced bone loss through its antioxidant properties via the SIRT1 signaling pathway.


Subject(s)
Osteoporosis , Rats , Animals , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteogenesis , Palmitic Acid/toxicity , Sirtuin 1 , Cell Differentiation , Oxidative Stress , Xanthophylls
12.
Biochem Biophys Res Commun ; 710: 149879, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579536

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with metabolic disorder and gut dysbiosis. Decreased abundance of hippuric acid (HA) was found in patients with IBD. HA, metabolized directly from benzoic acid in the intestine and indirectly from polyphenols, serves as a marker of polyphenol catabolism. While polyphenols and benzoic acid have been shown to alleviate intestinal inflammation, the role of HA in this context remains unknown. Herein, we investigated the effects and mechanism of HA on DSS-induced colitis mice. The results revealed that HA alleviated clinical activity and intestinal barrier damage, decreased pro-inflammatory cytokine production. Metagenomic sequencing suggested that HA treatment restored the gut microbiota, including an increase in beneficial gut bacteria such as Adlercreutzia, Eubacterium, Schaedlerella and Bifidobacterium_pseudolongum. Furthermore, we identified 113 candidate genes associated with IBD that are potentially under HA regulation through network pharmacological analyses. 10 hub genes including ALB, IL-6, HSP90AA1, and others were identified using PPI analysis and validated using molecular docking and mRNA expression analysis. Additionally, KEGG analysis suggested that the renin-angiotensin system (RAS), NF-κB signaling and Rap1 signaling pathways were important pathways in the response of HA to colitis. Thus, HA may provide novel biotherapy options for IBD.


Subject(s)
Colitis , Gastrointestinal Microbiome , Hippurates , Inflammatory Bowel Diseases , Humans , Animals , Mice , Dextran Sulfate , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Benzoic Acid , Disease Models, Animal , Mice, Inbred C57BL , Colon
13.
J Colloid Interface Sci ; 667: 111-118, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38626654

ABSTRACT

Due to the rapid increase in the number of spent lithium-ion batteries, there has been a growing interest in the recovery of degraded graphite. In this work, a rapid thermal shock (RTS) strategy is proposed to regenerate spent graphite for use in lithium-ion batteries. The results of structural and morphological characterization demonstrate that the graphite is well regenerated by the RTS process. Additionally, an amorphous carbon layer forms and coats onto the surface of the graphite, contributing to excellent rate performance. The regenerated graphite (RG-1000) displays excellent rate performance, with capacities of 413 mAh g-1 at 50 mA g-1 and 102.1 mAh g-1 at 1000 mA g-1, respectively. Furthermore, it demonstrates long-term cycle stability, maintaining a capacity of 80 mAh g-1 at 1000 mA g-1 with a capacity retention of 78.4 % after 600 cycles. This RTS method enables rapid and efficient regeneration of spent graphite anodes for lithium-ion batteries, providing a facile and environmentally friendly strategy for their direct regeneration.

14.
J Colloid Interface Sci ; 667: 303-311, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640650

ABSTRACT

Metal selenides have emerged as promising Na-storage anode materials owing to their substantial theoretical capacity and high cost-effectiveness. However, the application of metal selenides is hindered by inferior electronic conductivity, huge volume variation, and sluggish kinetics of ionic migration. In response to these challenges, herein, a hierarchical hollow tube consisting of FeSe2 nanosheets and Se quantum dots anchored within a carbon skeleton (HT-FeSe2/Se/C) is strategically engineered and synthesized. The most remarkable feature of HT-FeSe2/Se/C is the introduction of Se quantum dots, which could lead to high electron density near the Fermi level and significantly enhance the overall charge transfer capability of the electrode. Moreover, the distinctive hollow tubular structure enveloped by the carbon skeleton endows the HT-FeSe2/Se/C anode with robust structural stability and fast surface-controlled Na-storage kinetics. Consequently, the as-synthesized HT-FeSe2/Se/C demonstrates a reversible capacity of 253.5 mAh/g at a current density of 5 A/g and a high specific capacity of 343.9 mAh/g at 1 A/g after 100 cycles in sodium-ion batteries (SIBs). Furthermore, a full cell is assembled with HT-FeSe2/Se/C as the anode, and a vanadium-based cathode (Na3V2(PO4)2O2F), showcasing a high specific capacity of 118.1 mAh/g at 2 A/g. The excellent performance of HT-FeSe2/Se/C may hint at future material design strategies and advance the development and application of SIBs.

15.
Angew Chem Int Ed Engl ; : e202401559, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616720

ABSTRACT

Air self-charging aqueous batteries promise to integrate energy harvesting technology and battery systems, potentially overcoming a heavy reliance on energy and the spatiotemporal environment. However, the exploitation of multifunctional air self-charging battery systems using promising cathode materials and suitable charge carriers remains challenging. Herein, for the first time, we developed low-temperature self-charging aqueous Zn-K hybrid ion batteries (AZKHBs) using a fully conjugated hexaazanonaphthalene (HATN)-based porous aromatic framework as the cathode material, exhibiting redox chemistry using K+ as charge carriers, and regulating Zn-ion solvation chemistry to guide uniform Zn plating/stripping. The unique AZKHBs exhibit the exceptional electrochemical properties in all-climate conditions. Most importantly, the large potential difference causes the AZKHBs discharged cathode to be oxidized using oxygen, thereby initiating a self-charging process in the absence of an external power source. Impressively, the air self-charging AZKHBs can achieve a maximum voltage of 1.15 V, an impressive discharge capacity (466.3 mAh g-1), and exceptional self-charging performance even at -40 °C. Therefore, the development of self-charging AZKHBs offers a solution to the limitations imposed by the absence of a power grid in harsh environments or remote areas.

16.
Viruses ; 16(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38675896

ABSTRACT

Neutralizing antibodies (NtAbs) against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are indicators of vaccine efficacy that enable immunity surveillance. However, the rapid mutation of SARS-CoV-2 variants prevents the timely establishment of standards required for effective XBB vaccine evaluation. Therefore, we prepared four candidate standards (No. 11, No. 44, No. 22, and No. 33) using plasma, purified immunoglobulin, and a broad-spectrum neutralizing monoclonal antibody. Collaborative calibration was conducted across nine Chinese laboratories using neutralization methods against 11 strains containing the XBB and BA.2.86 sublineages. This study demonstrated the reduced neutralization potency of the first International Standard antibodies to SARS-CoV-2 variants of concern against XBB variants. No. 44 displayed broad-spectrum neutralizing activity against XBB sublineages, effectively reduced interlaboratory variability for nearly all XBB variants, and effectively minimized the geometric mean titer (GMT) difference between the live and pseudotyped virus. No. 22 showed a broader spectrum and higher neutralizing activity against all strains but failed to reduce interlaboratory variability. Thus, No. 44 was approved as a National Standard for NtAbs against XBB variants, providing a unified NtAb measurement standard for XBB variants for the first time. Moreover, No. 22 was approved as a national reference reagent for NtAbs against SARS-CoV-2, offering a broad-spectrum activity reference for current and potentially emerging variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/virology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , COVID-19 Vaccines/immunology , China , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
17.
Phytochemistry ; 222: 114105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657886

ABSTRACT

Three undescribed cassane diterpenoids, caesalpanins D-F (1-3), and seven known ones were isolated from the seeds of Caesalpinia sappan. Structures and absolute configurations of 1-3 were elucidated based on the extensive spectroscopic analysis, single-crystal X-ray diffraction analysis, and ECD calculations. Structurally, compound 1 was the first example of 18-norcassane diterpenoid and 2 was a rare 20-norcassane diterpenoid having an unusual five-membered oxygen bridge between C-10/C-18. The anti-proliferative activity of 1, 3, and 4-10 against PANC-1 cells (pancreatic ductal adenocarcinoma cell line) was evaluated, and phanginin H (4) was found to exhibit anti-cancer activity with IC50 value of 18.13 ± 0.63 µM. Compound 4 inhibited PANC-1 cell growth by arresting the cell cycle at G2/M phase via regulation of cyclin-dependent kinases, and the self-renewal and metastasis of PANC-1 cells by suppressing cancer cell stemness. Furthermore, compound 4 induced ROS generation and subsequently activated autophagy, which was demonstrated by the formation of autophagic vacuoles and dynamic change of autophagic flux. The induced ROS accumulation resulted in AMPK activation and subsequently regulation of mTORC1 activity and ULK phosphorylation, indicating that 4 triggered autophagy through ROS/AMPK/mTORC1 pathway. These findings suggested that 4 might potentially be an autophagy inducer for the therapy of pancreatic cancer.


Subject(s)
AMP-Activated Protein Kinases , Antineoplastic Agents, Phytogenic , Autophagy , Caesalpinia , Cell Proliferation , Diterpenes , Drug Screening Assays, Antitumor , Mechanistic Target of Rapamycin Complex 1 , Pancreatic Neoplasms , Reactive Oxygen Species , Seeds , Caesalpinia/chemistry , Humans , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Seeds/chemistry , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Structure-Activity Relationship , Dose-Response Relationship, Drug
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 220-227, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686401

ABSTRACT

In computer-aided medical diagnosis, obtaining labeled medical image data is expensive, while there is a high demand for model interpretability. However, most deep learning models currently require a large amount of data and lack interpretability. To address these challenges, this paper proposes a novel data augmentation method for medical image segmentation. The uniqueness and advantages of this method lie in the utilization of gradient-weighted class activation mapping to extract data efficient features, which are then fused with the original image. Subsequently, a new channel weight feature extractor is constructed to learn the weights between different channels. This approach achieves non-destructive data augmentation effects, enhancing the model's performance, data efficiency, and interpretability. Applying the method of this paper to the Hyper-Kvasir dataset, the intersection over union (IoU) and Dice of the U-net were improved, respectively; and on the ISIC-Archive dataset, the IoU and Dice of the DeepLabV3+ were also improved respectively. Furthermore, even when the training data is reduced to 70 %, the proposed method can still achieve performance that is 95 % of that achieved with the entire dataset, indicating its good data efficiency. Moreover, the data-efficient features used in the method have interpretable information built-in, which enhances the interpretability of the model. The method has excellent universality, is plug-and-play, applicable to various segmentation methods, and does not require modification of the network structure, thus it is easy to integrate into existing medical image segmentation method, enhancing the convenience of future research and applications.


Subject(s)
Algorithms , Deep Learning , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods , Diagnosis, Computer-Assisted/methods , Neural Networks, Computer
20.
Angew Chem Int Ed Engl ; : e202405418, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686901

ABSTRACT

Purely organic molecules with room-temperature phosphorescence (RTP) are potential luminescent materials with high exciton utilization for organic light-emitting diodes (OLEDs), but those exhibiting superb electroluminescence (EL) performances are rarely explored, mainly due to their long phosphorescence lifetimes. Herein, a robust purely organic RTP molecule, 3,6-bis(5-phenylindolo[3,2-a]carbazol-12(5H)-yl)-xanthen-9-one (3,2-PIC-XT), is developed. The neat film of 3,2-PIC-XT shows strong green RTP with a very short lifetime (2.9 µs) and a high photoluminescence quantum yield (72%), and behaviors balanced bipolar charge transport. The RTP nature of 3,2-PIC-XT is validated by steady-state and transient absorption and emission spectroscopies, and the working mechanism is deciphered by theoretical simulation. Non-doped multilayer OLEDs using thin neat films of 3,2-PIC-XT furnish an outstanding external quantum efficiency (EQE) of 24.91% with an extremely low roll-off (1.6%) at 1000 cd m‒2. High-performance non-doped top-emitting and tandem OLEDs are also achieved, providing remarkable EQEs of 24.53% and 42.50%, respectively. Delightfully, non-doped simplified OLEDs employing thick neat films of 3,2-PIC-XT are also realized, furnishing an excellent EQE of 17.79% and greatly enhanced operational lifetime. The temperature-dependent and transient EL spectroscopies demonstrate the electrophosphorescence attribute of 3,2-PIC-XT. These non-doped OLEDs are the best devices based on purely organic RTP materials reported so far.

SELECTION OF CITATIONS
SEARCH DETAIL
...