Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Talanta ; 276: 126228, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38733934

ABSTRACT

Multiplexed analysis of biomarkers in a single sample tube is essential for accurate diagnosis and therapy of diseases. However, the existing detection platforms suffer from many drawbacks, such as low specificity, limited applicable sceneries, and complicated operation. Hence, it is highly important to develop a versatile biomarker detection platform that can be used for disease diagnosis and pathophysiological research. In this study, we provide a versatile method for detecting biomarkers using dual-loop probes and quantum dots (QDs). This approach utilizes a dual-loop probe that consists of a recognition module for identifying specific targets, a template recognition module for initiating subsequent chain replacement cycles, and a signal module for facilitating the fixation of QDs on the 96-well plate. The lower limit of detection for miRNA-21 is determined to be at the aM level. Furthermore, this design may be easily expanded to simultaneously detect several targets, such as miRNA and C-reactive protein. The experimental results demonstrated the successful construction of the versatile biomarkers detection platform, and indicated that the sensitive and versatile platform has significant potential in the areas of bio-sensing, clinical diagnostics, and environmental sample analysis.


Subject(s)
Biomarkers , Limit of Detection , MicroRNAs , Quantum Dots , Quantum Dots/chemistry , MicroRNAs/analysis , Biomarkers/analysis , Humans , C-Reactive Protein/analysis , Biosensing Techniques/methods
2.
Altern Ther Health Med ; 30(5): 118-122, 2024 May.
Article in English | MEDLINE | ID: mdl-38518148

ABSTRACT

Objective: Currently, there is little information about the risk of sudden cardiac death and its predictors in aortic valve stenosis patients after transcatheter aortic valve replacement (TAVR). Therefore, we conducted a large sample cohort study on TAVR patients to evaluate the predictive factors and incidence of heart failure death caused by advanced heart failure (AHF) and sudden cardiac death. Furthermore, a nomogram model to predict its risk was constructed. Methods: This study retrospectively analyzed the data of 241 consecutive participants who had received TAVR treatment for aortic valve stenosis in our hospital from January 2020 to January 2022. The characteristics of the subjects, including myocardial zymogram, renal function, biochemical parameters, and cardiac ultrasound parameters, were collected. Moreover, a nomogram was constructed to predict the risk of sudden cardiac death and its predictors in patients after transcatheter aortic valve replacement (TAVR). The model was validatedinternally using measures of calibration and decision curve analysis. Results: Six independent risk factors(Age, smoking, diabetes, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and fasting blood glucose) were finally recruited into the nomogram model to predict the risk of advanced heart failure and/or cardiogenic shock in AS patients treated by TAVR. Besides, the decision curve analysis and receiver operating characteristic curve indicated that the nomogram prediction models showed positive clinical benefits. Conclusions: The Age, smoking, diabetes, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and fasting blood glucose are the independent risk factors for advanced heart failure and/or cardiogenic shock in AS patients treated by TAVR. The construction of nomograms is beneficial in predicting the risk of advanced heart failure and/or cardiogenic shock in AS patients treated by TAVR.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Nomograms , Shock, Cardiogenic , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Aortic Valve Stenosis/surgery , Aortic Valve Stenosis/complications , Female , Male , Retrospective Studies , Aged , Shock, Cardiogenic/etiology , Aged, 80 and over , Risk Factors
3.
Neuropsychiatr Dis Treat ; 12: 1617-21, 2016.
Article in English | MEDLINE | ID: mdl-27445477

ABSTRACT

OBJECTIVE: Astragalus polysaccharides (APS) are active constituents of Astragalus membranaceus. In this study, we aimed to investigate the effects of APS on memory impairment in a diabetic rat model and their mechanisms. METHODS: A diabetic model was established in 50 male Wistar rats with streptozotocin intra-peritoneal injection. A blood glucose level higher than 16.7 mmol/L obtained 72 hours after the injection was regarded as a successful diabetic model. The modeled rats were divided into model group, high, medium, and low doses of APS, and piracetam groups (positive control). A group of ten rats without streptozotocin-induced diabetes were used as a normal control. After respective consecutive 8-week treatments, the levels of blood fasting plasma glucose, insulin, hemoglobin A1c, memory performance, hippocampal malondialdehyde, and superoxide dismutase were determined. RESULTS: After the 8-week APS treatment, serum fasting plasma glucose, hemoglobin A1c, and insulin levels were decreased compared with those of the model group (P<0.05). Importantly, memory impairment in the diabetic model was reversed by APS treatments. In addition, hippocampal malondialdehyde concentration was lowered, whereas that of superoxide dismutase was higher after APS treatments. CONCLUSION: APS are important active components responsible for memory improvement in rats with streptozotocin-induced diabetes. The potential mechanism of action is associated with the effects of APS on glucose and lipid metabolism, and antioxidative and insulin resistance. APS are constituents of A. membranaceus that are potential candidate therapeutic agents for the treatment of memory deficit in diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL